Superoxide dismutases are metalloproteins which play a major role in defense against oxygen radicalmediated toxicity in aerobic organisms. Such proteins are important endogeneity cytoprotection factor involving defenc...Superoxide dismutases are metalloproteins which play a major role in defense against oxygen radicalmediated toxicity in aerobic organisms. Such proteins are important endogeneity cytoprotection factor involving defence. A 751-bp full-length cDNA sequence of an SOD gene was isolated from the Trichoderma harzianum. The full-length cDNA of the SOD gene consists of one 465-bp open reading frame nucleotide, which encodes a 15.7-kDa polypeptide consisting of 154 amino acid residues. Sequence analysis revealed that SOD gene has more than 72%-86% amino acid sequence homology with those of other fungi. The SOD gene was integrated into the genomic DNA of pYES2 by insertion into a single site for recombination, yielding the recombinant pYES2-SOD. SOD expressed by pYES2-SOD was induced by galactose. We test whether SOD could offer abiotic stress resistance when it was introduced into yeast ceils. A transgenic yeast harboring T. harzianum SOD was generated under the control of a constitutively expressed GAL promoter. The results indicated that SOD yeast transformants had significantly higher resistance to salt and drought stress.展开更多
Curvularia leaf spot, caused mainly by Curvularia lunata, is a widespread plant disease in China. In the recent years, di- rectional host selection by the pathogen, which likely results in the virulence differentiatio...Curvularia leaf spot, caused mainly by Curvularia lunata, is a widespread plant disease in China. In the recent years, di- rectional host selection by the pathogen, which likely results in the virulence differentiation in pathogens, is widely reported. Among the hallmarks potentially associated to pathogen variation in virulence, superoxide dismutase gene Sod has been found to be closely related to the enhancement of virulence. In the present study, the full-length of Sod was obtained via Blastn alignment against GenBank and the whole genome of C. lunata. In order to understand the role of Sod in the vir- ulence variation in C. lunata, targeted gene disruption was performed to construct Sod mutants. The cell wall degrading enzyme (CWDE) activities and toxin production of ASod were not distinctly different from wild-type strain CX-3 and its complon. However, at an early stage of infection, 3Sod virulence appeared to be lower than CX-3 and the complon, while at a later stage, its virulence gradually returned to the level of CX-3 and the complon. Furthermore, the melanin production of ASod was significantly reduced compared to CX-3 and the complon, suggesting that Sod gene influences the virulence by regulating melanin production at an early stage of infection but is not essential for pathogenicity. However, the disruption of Sod did not significantly affect the transcriptional expression of the melanin biosynthesis-associated genes, bml and scd. Therefore, we infer that Sod in C. lunata are involved, to some extent, with the virulence in maize leaf, but still needs further studies to have a clear understanding of its mechanism.展开更多
Superoxide dismutase(SOD, EC 1.15.1.1) plays a key role in response to drought stress, and differences in SOD activity changes among cultivars are important under drought conditions. We obtained the full-length DNA of...Superoxide dismutase(SOD, EC 1.15.1.1) plays a key role in response to drought stress, and differences in SOD activity changes among cultivars are important under drought conditions. We obtained the full-length DNA of the chloroplast Cu/Zn-SOD gene(Ah CSD2)from 11 allotetraploid cultivars and 5 diploid wild species in peanut. BLAST search against the peanut genome showed that the Ah CSD2 genes g CSD2-1 and g CSD2-2 are located at the tops of chromosome A03(A genome) and B03(B genome), respectively, and both contain 8exons and 7 introns. Nucleotide sequence analyses indicated that g CSD2-2 sequences were identical among all the tested cultivars, while g CSD2-1 sequences showed allelic variations.The amino acid sequences deduced from g CSD2-1 and g CSD2-2 both contain a chloroplast transit peptide and are distinguished by 6 amino acid(aa) residue differences. The other 2aa residue variations in the mature peptide regions give rise to three-dimensional structure changes of the protein deduced from the genes g CSD2-1 and g CSD2-2. Sequences analyses of cultivars and wild species showed that g CSD2-2 of Arachis hypogaea and g Aip CSD2(Arachis ipaensis) are identical, and despite the abundant polymorphic loci between g CSD2-1 of A.hypogaea and sequences from A genome wild species, the deduced amino acid sequence of Ah CSD2-1(A. hypogaea) is identical to that of Adu CSD2(Arachis duranensis), whereas Aco CSD2(Arachis correntina) and Aca CSD2(Arachis cardenasii) both have 2 aa differences in the transit peptide region compared with Ah CSD2-1(A. hypogaea). Based on the Peanut Genome Project, promoter prediction revealed many stress-related cis-acting elements within the potential promoter regions(pp-A and pp-B). pp-A contains more binding sites for drought-associated transcriptional factors than pp-B. We hypothesize that the marked changes in SOD activity in different cultivars under drought stress are tightly regulated by transcription factors through transcription and expression of Ah CSD2 genes.展开更多
A new Fe-SOD gene from a native Chinese tobacco germplasm namely HZNH has been successfully cloned and expressed. Full-length cDNA sequences of the Fe-SOD gene was obtained by employing the 5′ and 3′end RACE method ...A new Fe-SOD gene from a native Chinese tobacco germplasm namely HZNH has been successfully cloned and expressed. Full-length cDNA sequences of the Fe-SOD gene was obtained by employing the 5′ and 3′end RACE method from the HZNH′s cDNA library. The full sequence was 1145 bp in length, including 170 bp of 5′untranslated region, 288 bp of 3′untranslated region and 687 bp of coding region. The coding region encoded a peptide of 228 amino acid residues, in which there was a signal peptide with 26 amino acids and a mature peptide of 202 amino acids. The full-length cDNA sequence was compared with all other reported plants’ Fe-SOD genes’. The result of Blast analysis showed that they shared high homology(>80%) ,the highest one was to N. plumbaginifolia’s with the homology as high as 97.69%. This cDNA was constructed into the prokaryotic expression vector, pQE30a/FeSOD, and transformed into E.coli M15 which was induced with IPTG. SDS-PAGE showed that 27 kD proteins was expressed. The soluble proteins showed the Fe-SOD enzyme activities on PAGE-based isozyme spectrum indicating that this expressed soluble protein is indeed the Fe-SOD enzyme.展开更多
基金the National High Technology Research and Development Programme of China(No.2003AA241140)
文摘Superoxide dismutases are metalloproteins which play a major role in defense against oxygen radicalmediated toxicity in aerobic organisms. Such proteins are important endogeneity cytoprotection factor involving defence. A 751-bp full-length cDNA sequence of an SOD gene was isolated from the Trichoderma harzianum. The full-length cDNA of the SOD gene consists of one 465-bp open reading frame nucleotide, which encodes a 15.7-kDa polypeptide consisting of 154 amino acid residues. Sequence analysis revealed that SOD gene has more than 72%-86% amino acid sequence homology with those of other fungi. The SOD gene was integrated into the genomic DNA of pYES2 by insertion into a single site for recombination, yielding the recombinant pYES2-SOD. SOD expressed by pYES2-SOD was induced by galactose. We test whether SOD could offer abiotic stress resistance when it was introduced into yeast ceils. A transgenic yeast harboring T. harzianum SOD was generated under the control of a constitutively expressed GAL promoter. The results indicated that SOD yeast transformants had significantly higher resistance to salt and drought stress.
基金The National Natural Science Foundation of China(31171798 and 31471734)the China Agriculture Research System,China(CARS-02)
文摘Curvularia leaf spot, caused mainly by Curvularia lunata, is a widespread plant disease in China. In the recent years, di- rectional host selection by the pathogen, which likely results in the virulence differentiation in pathogens, is widely reported. Among the hallmarks potentially associated to pathogen variation in virulence, superoxide dismutase gene Sod has been found to be closely related to the enhancement of virulence. In the present study, the full-length of Sod was obtained via Blastn alignment against GenBank and the whole genome of C. lunata. In order to understand the role of Sod in the vir- ulence variation in C. lunata, targeted gene disruption was performed to construct Sod mutants. The cell wall degrading enzyme (CWDE) activities and toxin production of ASod were not distinctly different from wild-type strain CX-3 and its complon. However, at an early stage of infection, 3Sod virulence appeared to be lower than CX-3 and the complon, while at a later stage, its virulence gradually returned to the level of CX-3 and the complon. Furthermore, the melanin production of ASod was significantly reduced compared to CX-3 and the complon, suggesting that Sod gene influences the virulence by regulating melanin production at an early stage of infection but is not essential for pathogenicity. However, the disruption of Sod did not significantly affect the transcriptional expression of the melanin biosynthesis-associated genes, bml and scd. Therefore, we infer that Sod in C. lunata are involved, to some extent, with the virulence in maize leaf, but still needs further studies to have a clear understanding of its mechanism.
基金financial support by the Natural Science Foundation of China (NSFC) (31201167)the earmarked fund for China Agriculture Research System (CARS-14)+1 种基金the Peanut Seed Industry Project in Shandong province of Chinathe earmarked fund for Agriculture Research System in Shandong province of China
文摘Superoxide dismutase(SOD, EC 1.15.1.1) plays a key role in response to drought stress, and differences in SOD activity changes among cultivars are important under drought conditions. We obtained the full-length DNA of the chloroplast Cu/Zn-SOD gene(Ah CSD2)from 11 allotetraploid cultivars and 5 diploid wild species in peanut. BLAST search against the peanut genome showed that the Ah CSD2 genes g CSD2-1 and g CSD2-2 are located at the tops of chromosome A03(A genome) and B03(B genome), respectively, and both contain 8exons and 7 introns. Nucleotide sequence analyses indicated that g CSD2-2 sequences were identical among all the tested cultivars, while g CSD2-1 sequences showed allelic variations.The amino acid sequences deduced from g CSD2-1 and g CSD2-2 both contain a chloroplast transit peptide and are distinguished by 6 amino acid(aa) residue differences. The other 2aa residue variations in the mature peptide regions give rise to three-dimensional structure changes of the protein deduced from the genes g CSD2-1 and g CSD2-2. Sequences analyses of cultivars and wild species showed that g CSD2-2 of Arachis hypogaea and g Aip CSD2(Arachis ipaensis) are identical, and despite the abundant polymorphic loci between g CSD2-1 of A.hypogaea and sequences from A genome wild species, the deduced amino acid sequence of Ah CSD2-1(A. hypogaea) is identical to that of Adu CSD2(Arachis duranensis), whereas Aco CSD2(Arachis correntina) and Aca CSD2(Arachis cardenasii) both have 2 aa differences in the transit peptide region compared with Ah CSD2-1(A. hypogaea). Based on the Peanut Genome Project, promoter prediction revealed many stress-related cis-acting elements within the potential promoter regions(pp-A and pp-B). pp-A contains more binding sites for drought-associated transcriptional factors than pp-B. We hypothesize that the marked changes in SOD activity in different cultivars under drought stress are tightly regulated by transcription factors through transcription and expression of Ah CSD2 genes.
文摘A new Fe-SOD gene from a native Chinese tobacco germplasm namely HZNH has been successfully cloned and expressed. Full-length cDNA sequences of the Fe-SOD gene was obtained by employing the 5′ and 3′end RACE method from the HZNH′s cDNA library. The full sequence was 1145 bp in length, including 170 bp of 5′untranslated region, 288 bp of 3′untranslated region and 687 bp of coding region. The coding region encoded a peptide of 228 amino acid residues, in which there was a signal peptide with 26 amino acids and a mature peptide of 202 amino acids. The full-length cDNA sequence was compared with all other reported plants’ Fe-SOD genes’. The result of Blast analysis showed that they shared high homology(>80%) ,the highest one was to N. plumbaginifolia’s with the homology as high as 97.69%. This cDNA was constructed into the prokaryotic expression vector, pQE30a/FeSOD, and transformed into E.coli M15 which was induced with IPTG. SDS-PAGE showed that 27 kD proteins was expressed. The soluble proteins showed the Fe-SOD enzyme activities on PAGE-based isozyme spectrum indicating that this expressed soluble protein is indeed the Fe-SOD enzyme.