Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inla...Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC, TN, and TP recovery. Moreover, plants were an important source of soil nutrients and vegetation restoration was conducive to soil nutrient accumulation. In brief, wetland restoration increased the accumulation of soil biogenic elements, which indicated that positive ecosystem functions changes had occurred.展开更多
Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic ...Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.展开更多
Soil amendment is one of the most effective methods to improve saline-alkali soil.In this study,laboratory experiments were conducted to verify the effect of 13 kinds of amendments and their combinations(Citric acid(N...Soil amendment is one of the most effective methods to improve saline-alkali soil.In this study,laboratory experiments were conducted to verify the effect of 13 kinds of amendments and their combinations(Citric acid(NM),Phosphogypsum(LS),Aluminum sulfate+citric acid(AL+NM),Aluminum sulfate+phosphogypsum(AL+LS),Aluminum sulfate+citric acid+phosphogypsum(HH),Zeolite(Z),Acidified zeolite(ZH),Aluminum sulfate(AL),Aluminum sulfate+zeolite(AL+Z),Aluminum sulfate+acidified zeolite(AL+ZH),Poly Aluminum chloride(ALCL),Polyaluminium chloride+zeolite(ALCL+Z),Polyaluminium chloride+acidified zeolite(ALCL+ZH))on soil pH,metal cations content,exchangeable Na+,exchangeable sodium percentage(ESP)in the lab.And then the five most effective amendments(Z,ZH,AL,AL+Z,and AL+ZH)were chosen applying both in dry field(maize field)and paddy field to evaluate their improvement on soda saline-alkali soil and crop yield in the northeast Songnen Plain,China.The lab results showed that AL,AL+Z and AL+ZH treatments could significantly reduce the pH in soil solution and increase the content of metal cations.Z and ZH treatments could adsorb metal cations in soil.Both in dry and paddy fields,all five treatments could increase the soil saturated hydraulic conductivity(Ks),increased from 9.63 to 60.02 mm/d and 0.18 to 33.25 mm/d,respectively,of which the AL treatment was the best;all five treatments could reduce the content of exchangeable Na+in soil,and decrease by 38.62%-61.33%and 25.24%-71.53%,respectively,of which the AL+ZH treatment was the best;all treatments could reduce soil exchangeable sodium percentage,and decrease by 0.14-0.22 and 0.14-0.41,respectively,of which the AL+ZH treatment was the best;AL,AL+Z and AL+ZH treatments could improve soil organic matter content;all treatments could effectively improve the yield of crops,and increase 23.98%-60.75%and 52.51%-260.21%,respectively,of which the AL treatment was the best in dry field and the AL+ZH treatment was the best in paddy field.The effect of AL treatment was the best in dry field and AL+ZH treatment was the best in paddy field of soda saline-alkali soil.This study could provide instructive information for the chemical improvement and agricultural utilization of soda saline-alkali soils in the world.展开更多
基金the auspices of National Key Research and Development Program of China(No.2016YFC05004)National Project of China(No.41971140)Science Foundation for Excellent Youth Scholars of Jilin Province(No.20180520097JH)。
文摘Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC, TN, and TP recovery. Moreover, plants were an important source of soil nutrients and vegetation restoration was conducive to soil nutrient accumulation. In brief, wetland restoration increased the accumulation of soil biogenic elements, which indicated that positive ecosystem functions changes had occurred.
基金Supported by projects of the National Key Research and Developm ent China(No.2016YFC0501201-04)Strategic Planning of Ins titute of Northeast Geography and Agroecology,CAS(No.Y6H2091001).
文摘Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.
基金the National Natural Science Foundation of China(Grant No.41977007,No.41807131,No.41830754)China Postdoctoral Science Foundation(Grant No.2019M653707)+1 种基金Research project of State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China(Grant No.2019KJCXTD-4,QJNY-2019-01)this study was supported by:China Three Gorges Corporation and it contributes to the following projects:BHT/0869.
文摘Soil amendment is one of the most effective methods to improve saline-alkali soil.In this study,laboratory experiments were conducted to verify the effect of 13 kinds of amendments and their combinations(Citric acid(NM),Phosphogypsum(LS),Aluminum sulfate+citric acid(AL+NM),Aluminum sulfate+phosphogypsum(AL+LS),Aluminum sulfate+citric acid+phosphogypsum(HH),Zeolite(Z),Acidified zeolite(ZH),Aluminum sulfate(AL),Aluminum sulfate+zeolite(AL+Z),Aluminum sulfate+acidified zeolite(AL+ZH),Poly Aluminum chloride(ALCL),Polyaluminium chloride+zeolite(ALCL+Z),Polyaluminium chloride+acidified zeolite(ALCL+ZH))on soil pH,metal cations content,exchangeable Na+,exchangeable sodium percentage(ESP)in the lab.And then the five most effective amendments(Z,ZH,AL,AL+Z,and AL+ZH)were chosen applying both in dry field(maize field)and paddy field to evaluate their improvement on soda saline-alkali soil and crop yield in the northeast Songnen Plain,China.The lab results showed that AL,AL+Z and AL+ZH treatments could significantly reduce the pH in soil solution and increase the content of metal cations.Z and ZH treatments could adsorb metal cations in soil.Both in dry and paddy fields,all five treatments could increase the soil saturated hydraulic conductivity(Ks),increased from 9.63 to 60.02 mm/d and 0.18 to 33.25 mm/d,respectively,of which the AL treatment was the best;all five treatments could reduce the content of exchangeable Na+in soil,and decrease by 38.62%-61.33%and 25.24%-71.53%,respectively,of which the AL+ZH treatment was the best;all treatments could reduce soil exchangeable sodium percentage,and decrease by 0.14-0.22 and 0.14-0.41,respectively,of which the AL+ZH treatment was the best;AL,AL+Z and AL+ZH treatments could improve soil organic matter content;all treatments could effectively improve the yield of crops,and increase 23.98%-60.75%and 52.51%-260.21%,respectively,of which the AL treatment was the best in dry field and the AL+ZH treatment was the best in paddy field.The effect of AL treatment was the best in dry field and AL+ZH treatment was the best in paddy field of soda saline-alkali soil.This study could provide instructive information for the chemical improvement and agricultural utilization of soda saline-alkali soils in the world.