Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requireme...Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.展开更多
Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By...Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By comparing soil organic carbon(SOC)contents change before and after biochar addition,we deciphered the driving factors or processes that control SOC change in response to biochar application.A limited increase in SOC was observed,about by 1.16%-12.80%,even when biochar was applied at the rate of 10%of bulk soil weight.Biochar application enhanced soil dissolved organic carbon(DOC)significantly by up to 67%.It was estimated that about 50%SOC was allocated to small macroaggregates(250-2000μm,CPOC),and SOC in silt and clay-sized particles(<53μm)decreased obviously after biochar addition.Microbial biomass increased with biochar amendment,of which actinomycetes(ACT),fungus(FUN),protozoon(PRO),and bacteria with straight-chain saturated fatty acids(OB)increased remarkably.Multiple linear regression models implied that DOC was governed by ACT and soil N∶P ratio,while SOC mostly depended on CPOC.The principal component analysis and the partial least square path model(PLS-PM)indicated that biochar addition aggravated nitrogen limitation in saline-sodic soils,and effects of microorganisms on regulating SOC greatly depended on nitrogen bioavailability.Biochar application had vastly changed interactions between environmental factors and SOC in saline-sodic soils.Effects of nutrients on SOC shifted to great inhibition from strong stimulation after biochar addition,meanwhile,aggregation was the only factor presenting positive effects on SOC.How to eliminate nutrient limitation and better soil aggregation process should be considered in priority when biochar was used to improve SOC in saline-sodic soils.展开更多
The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 mi...The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 million hectares are cultivated. At present, 103 millionacre-feet river flow is diverted into irrigation canals. In addition, 42 million acre feet of thegroundwater are being pumped through 257697 tubewells to supplement the canal supplies.展开更多
The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for...The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for reducing soil salinity to a desirable level. The present study aimed to investigate desodification of saline and sodic soils in central area of Khuzestan Province. Consequently, a large area of 3216 ha with S4A3 salinity/sodicity class in Khuzestan, Iran, was selected to obtain the required data. This experiment was conducted with two treatments and tree replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four 25 cm intervals. In the second treatment, 5000 kg/ha Sulfuric Acid was applied prior to salt leaching together with leaching water. The intermittent ponding method was conducted with double rings in a rectangular array. The required physical and chemical analyses were performed on the collected data. The leaching water was supplied from Shotait River. Four mathematical models were applied to the collected experimental data to derive a suitable empirical model. The results for large scale applications indicated that the proposed logarithmic model can estimate the capital leaching requirement much than the previously proposed models.展开更多
Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inla...Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC, TN, and TP recovery. Moreover, plants were an important source of soil nutrients and vegetation restoration was conducive to soil nutrient accumulation. In brief, wetland restoration increased the accumulation of soil biogenic elements, which indicated that positive ecosystem functions changes had occurred.展开更多
Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic ...Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.展开更多
If some suitable treatments are used plantations can be grown and established on the soil of soda-saline-alkali with the soil condition of PH 8.5- 9.6, salinity 0.1-0.3% and normality ratio of saline base Na+ / ( Ca++...If some suitable treatments are used plantations can be grown and established on the soil of soda-saline-alkali with the soil condition of PH 8.5- 9.6, salinity 0.1-0.3% and normality ratio of saline base Na+ / ( Ca+++ Mg++)≥4. From the results of plot inventory and tree stem analysis, the increment of Poplus simonigra is highest. For 9 years, the volume can reach 100 m3/ha, the biomass (above ground) can reach 28.7 ton/ha. Poplus simonigra grows very well on the all kinds of soda-saline-alkali soils except for the alkali spot with the worst soil condition. So Poplus simonigra is a good tree species for planting on the soil of soda-saline-alkali.展开更多
Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cov...Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lyme grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.展开更多
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s...Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions.展开更多
Hohhot Plain, lying in the front of the Yingshan Mountains in inner Mongolia, isbounded by the mountain north, the Yellow River south, the Manhan Mountain east andloess hills southeast. Being 986 to 1100 meters above ...Hohhot Plain, lying in the front of the Yingshan Mountains in inner Mongolia, isbounded by the mountain north, the Yellow River south, the Manhan Mountain east andloess hills southeast. Being 986 to 1100 meters above ses level, the plain generally slopesdown to the southwest, just in accordance with the flowing direction of the Great Heihe Riv-er and the Small Heihe River.展开更多
文摘Amelioration of saline-sodic soils through land preparation with three tillage implements (disc plow, rotavator and cultivator) each followed by application of sulfuric acid at 20% of gypsum (CaSO4-2H2O) requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites, i.e., Jhottianwala, Gabrika (Thabal), and Thatta Langar, in Tehsil Pindi Bhattian, Hafizahad District, Pakistan. Within 2.5 years, there was a decrease in the salinity parameters measured (electrical conductivity, pH, and sodium adsorption ratio), with a gradual increase in rice and wheat grain yields. It was observed that the disc plow, which not only ensured favorable yields but also helped improve soil health at all the three sites, was the most effective tillage implement. Also, application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.
基金Under the auspices of the National Key Research and Development Program of China(No.2016YFC0500404-5)。
文摘Biochar amendment is considered as an efficient practice for improving carbon storage in soils.However,to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood.By comparing soil organic carbon(SOC)contents change before and after biochar addition,we deciphered the driving factors or processes that control SOC change in response to biochar application.A limited increase in SOC was observed,about by 1.16%-12.80%,even when biochar was applied at the rate of 10%of bulk soil weight.Biochar application enhanced soil dissolved organic carbon(DOC)significantly by up to 67%.It was estimated that about 50%SOC was allocated to small macroaggregates(250-2000μm,CPOC),and SOC in silt and clay-sized particles(<53μm)decreased obviously after biochar addition.Microbial biomass increased with biochar amendment,of which actinomycetes(ACT),fungus(FUN),protozoon(PRO),and bacteria with straight-chain saturated fatty acids(OB)increased remarkably.Multiple linear regression models implied that DOC was governed by ACT and soil N∶P ratio,while SOC mostly depended on CPOC.The principal component analysis and the partial least square path model(PLS-PM)indicated that biochar addition aggravated nitrogen limitation in saline-sodic soils,and effects of microorganisms on regulating SOC greatly depended on nitrogen bioavailability.Biochar application had vastly changed interactions between environmental factors and SOC in saline-sodic soils.Effects of nutrients on SOC shifted to great inhibition from strong stimulation after biochar addition,meanwhile,aggregation was the only factor presenting positive effects on SOC.How to eliminate nutrient limitation and better soil aggregation process should be considered in priority when biochar was used to improve SOC in saline-sodic soils.
文摘The Indus Plains of Pakistan lies between 23°to 37°latitude and 61°to 76°longi-tude in the northern hemisphere. The total Canal Commanded Area (CCA) is about 13.50million hectares of which 11.21 million hectares are cultivated. At present, 103 millionacre-feet river flow is diverted into irrigation canals. In addition, 42 million acre feet of thegroundwater are being pumped through 257697 tubewells to supplement the canal supplies.
文摘The most important task in leaching practices is assessment of water quantity required for leaching of saline and saline-sodic soils. Therefore, reliable estimation of the required leaching water quantity is vital for reducing soil salinity to a desirable level. The present study aimed to investigate desodification of saline and sodic soils in central area of Khuzestan Province. Consequently, a large area of 3216 ha with S4A3 salinity/sodicity class in Khuzestan, Iran, was selected to obtain the required data. This experiment was conducted with two treatments and tree replicates. In the first treatment, the experiment was conducted by applying just 100 cm water depth in four 25 cm intervals. In the second treatment, 5000 kg/ha Sulfuric Acid was applied prior to salt leaching together with leaching water. The intermittent ponding method was conducted with double rings in a rectangular array. The required physical and chemical analyses were performed on the collected data. The leaching water was supplied from Shotait River. Four mathematical models were applied to the collected experimental data to derive a suitable empirical model. The results for large scale applications indicated that the proposed logarithmic model can estimate the capital leaching requirement much than the previously proposed models.
基金the auspices of National Key Research and Development Program of China(No.2016YFC05004)National Project of China(No.41971140)Science Foundation for Excellent Youth Scholars of Jilin Province(No.20180520097JH)。
文摘Soil carbon(C), nitrogen(N) and phosphorus(P) concentrations and stoichiometries can be used to evaluate the success indicators to the effects of wetland restoration and reflect ecosystem function. Restoration of inland soda saline-alkali wetlands is widespread, however, the soil nutrition changes that follow restoration are unclear. We quantified the recovery trajectories of soil physicochemical properties, including soil organic carbon(SOC), total nitrogen(TN), and total phosphorus(TP) pools, for a chronosequence of three restored wetlands(7 yr, 12 yr and 21 yr) and compared these properties to those of degraded and natural wetlands in the western Songnen Plain, Northeast China. Wetland degradation lead to the loss of soil nutrients. Relative to natural wetlands, the mean reductions of in SOC, TN, and TP concentrations were 89.6%, 65.5% and 52.5%, respectively. Nutrients recovered as years passed after restoration. The SOC, TN, and TP concentrations increased by 2.36 times, 1.15 times, and 0.83 times, respectively in degraded wetlands that had been restored for 21 yr, but remained 29.2%, 17.3%, and 12.8% lower, respectively, than those in natural wetlands. The soil C∶N(RC N), C∶P(R CP), and N∶P(R NP) ratios increased from 5.92 to 8.81, 45.36 to 79.19, and 7.67 to 8.71, respectively in the wetland that had been restored for 12 yr. These results were similar to those from the natural wetland and the wetland that had been restored for 21 yr(P > 0.05). Soil nutrients changes occurred mainly in the upper layers(≤ 30 cm), and no significant differences were found in deeper soils(> 30 cm). Based on this, we inferred that it would take at least 34 yr for SOC, TN, and TP concentrations and 12 yr for RC N, R CP, and RN P in the top soils of degraded wetlands to recover to levels of natural wetlands. Soil salinity negatively influenced SOC(r =-0.704, P < 0.01), TN(r =-0.722, P < 0.01), and TP(r =-0.882, P < 0.01) concentrations during wetland restoration, which indicates that reducing salinity is beneficial to SOC, TN, and TP recovery. Moreover, plants were an important source of soil nutrients and vegetation restoration was conducive to soil nutrient accumulation. In brief, wetland restoration increased the accumulation of soil biogenic elements, which indicated that positive ecosystem functions changes had occurred.
基金Supported by projects of the National Key Research and Developm ent China(No.2016YFC0501201-04)Strategic Planning of Ins titute of Northeast Geography and Agroecology,CAS(No.Y6H2091001).
文摘Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.
文摘If some suitable treatments are used plantations can be grown and established on the soil of soda-saline-alkali with the soil condition of PH 8.5- 9.6, salinity 0.1-0.3% and normality ratio of saline base Na+ / ( Ca+++ Mg++)≥4. From the results of plot inventory and tree stem analysis, the increment of Poplus simonigra is highest. For 9 years, the volume can reach 100 m3/ha, the biomass (above ground) can reach 28.7 ton/ha. Poplus simonigra grows very well on the all kinds of soda-saline-alkali soils except for the alkali spot with the worst soil condition. So Poplus simonigra is a good tree species for planting on the soil of soda-saline-alkali.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest (200903001-06-6)
文摘Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lyme grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.
基金the financial support from the National Natural Science Foundation of China(No.51979191)the National Key Research and Development Program of China(Nos.2016YFC0802204,2016YFC0802201)+2 种基金the National Natural Science Fund for Innovative Research Groups Science Foundation(No.51321065)the Construction Science and Technology Project of the Ministry of Transport of the People’s Republic of China(No.2014328224040)the Science and Technology Plan Project of Tianjin Port(No.2020-165)。
文摘Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions.
文摘Hohhot Plain, lying in the front of the Yingshan Mountains in inner Mongolia, isbounded by the mountain north, the Yellow River south, the Manhan Mountain east andloess hills southeast. Being 986 to 1100 meters above ses level, the plain generally slopesdown to the southwest, just in accordance with the flowing direction of the Great Heihe Riv-er and the Small Heihe River.