High voltage,high energy density,nominal cycle life,and low cost are the most critical requirements of rechargeable batteries for their widespread energy storage applications in electric vehicles and renewable energy ...High voltage,high energy density,nominal cycle life,and low cost are the most critical requirements of rechargeable batteries for their widespread energy storage applications in electric vehicles and renewable energy technologies.Na-MnO_(2) battery could be a low-cost contender,but it suffers extensively from its low cell voltage and poor rechargeability.In this study,we modified the conventional cell structure of Na-MnO_(2) battery and established altered cell chemistry through a hybrid electrochemical process consisting of Na striping/plating at the anode and Zn^(2+) insertion/de-insertion along with MnO_(2) dissolution/deposition at the cathode.After the modification,Na-MnO_(2) battery exhibits a discharge capacity of 267.10 mA h/g and a cell voltage of 3.30 V(vs.Na/Na^(+)),resulting in a high specific energy density of 881.43 Wh/kg.After 300 cycles,the battery retains 98% of its first-cycle discharge capacity with100% coulombic efficiency.Besides,Na metal-free battery assembled using sodium biphenyl as a safer anode also delivers an excellent energy density of 810.0 Wh/kg.This work could provide a feasible method to develop an advanced Na-MnO_(2) battery for real-time energy storage applications.展开更多
Sodium-ion batteries(SIBs)are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium.Among various Na insertion cathode materials,Na0.44MnO2 has attracted the most att...Sodium-ion batteries(SIBs)are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium.Among various Na insertion cathode materials,Na0.44MnO2 has attracted the most attention because of its cost effectiveness and structural stability.However,the low initial charge capacity for Na-poor Na0.44MnO2 hinders its practical applications.Herein,we developed a facile chemical presodiated method using sodiated biphenly to transform Na-poor Na0.44MnO2 into Na-rich Na0.66MnO2.After presodiation,the initial charge capacity of Na0.44MnO2 is greatly enhanced from 56.5 mA·h/g to 115.7 mA·h/g at 0.1 C(1 C=121 mA/g)and the excellent cycling stability(the capacity retention of 94.1%over 200 cycles at 2 C)is achieved.This presodiation strategy would open a new avenue for promoting the practical applications of Na-poor cathode materials in sodium-ion batteries.展开更多
基金supported by the Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016H1D3A1909680)supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20215610100040), Development of 20Wh seawater secondary battery unit cellminsisterio de Economia y competitividal (Spain) for the financially supporting this study through Juan de la Cierva-Incorporación program (IJC2018-038426-I)。
文摘High voltage,high energy density,nominal cycle life,and low cost are the most critical requirements of rechargeable batteries for their widespread energy storage applications in electric vehicles and renewable energy technologies.Na-MnO_(2) battery could be a low-cost contender,but it suffers extensively from its low cell voltage and poor rechargeability.In this study,we modified the conventional cell structure of Na-MnO_(2) battery and established altered cell chemistry through a hybrid electrochemical process consisting of Na striping/plating at the anode and Zn^(2+) insertion/de-insertion along with MnO_(2) dissolution/deposition at the cathode.After the modification,Na-MnO_(2) battery exhibits a discharge capacity of 267.10 mA h/g and a cell voltage of 3.30 V(vs.Na/Na^(+)),resulting in a high specific energy density of 881.43 Wh/kg.After 300 cycles,the battery retains 98% of its first-cycle discharge capacity with100% coulombic efficiency.Besides,Na metal-free battery assembled using sodium biphenyl as a safer anode also delivers an excellent energy density of 810.0 Wh/kg.This work could provide a feasible method to develop an advanced Na-MnO_(2) battery for real-time energy storage applications.
基金This work was support by the Regional Innovation and Development Joint Fund,China(No.U20A20249)the National Natural Science Foundation of China(No.21972108)the National Key Research Program of China(No.2016YFB0100200).
文摘Sodium-ion batteries(SIBs)are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium.Among various Na insertion cathode materials,Na0.44MnO2 has attracted the most attention because of its cost effectiveness and structural stability.However,the low initial charge capacity for Na-poor Na0.44MnO2 hinders its practical applications.Herein,we developed a facile chemical presodiated method using sodiated biphenly to transform Na-poor Na0.44MnO2 into Na-rich Na0.66MnO2.After presodiation,the initial charge capacity of Na0.44MnO2 is greatly enhanced from 56.5 mA·h/g to 115.7 mA·h/g at 0.1 C(1 C=121 mA/g)and the excellent cycling stability(the capacity retention of 94.1%over 200 cycles at 2 C)is achieved.This presodiation strategy would open a new avenue for promoting the practical applications of Na-poor cathode materials in sodium-ion batteries.