期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Lotus-stalk Bi4Ge3O12 as binder-free anode for lithium and sodium ion batteries 被引量:2
1
作者 Jianlong Xu Wei Wei +2 位作者 Xu Zhang Lei Liang Maotian Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第6期1341-1345,共5页
Alloyed-type anode materials with high-energy density for lithium and sodium ion batteries attracted much attention of the researchers. However, substantial volume expansion of these materials in the devices during re... Alloyed-type anode materials with high-energy density for lithium and sodium ion batteries attracted much attention of the researchers. However, substantial volume expansion of these materials in the devices during repeated electrochemical process leads to fast capacity fading and hinders their further practical application. Nanotechnology could act as a useful tool to effectively address the issue. Herein, lotus-stalk Bi4Ge3O12 nanosheets vertically grown on the nickel foam (denoted as Bi4Ge3O12 NSs@NF) were prepared via a straight-forward solvothermal method. Benefiting from their three dimensional (3D) conductive framework and two dimensional (2D) lotus-stalk Bi4Ge3O12 nanosheet structure, as anode materials of lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), the electrochemical performances of Bi4Ge3O12 NSs@NF were greatly enhanced as a result of mitigating the huge volume variations during cycles. The Bi4Ge3O12 NSs@NF electrodes delivered a high reversible capacity of 1033.1 mAh/g for the first cycle and exhibited 68.6%capacity retention of after 88 cycles at 0.10 A/g in the voltage window of 0.01~3.0 V versus Li/Li+. In the test of NIBs, the lotus-stalk Bi4Ge3O12 composite electrodes still stored Na+as high as 332.3 mAh/g at 0.10 A/g over 100 sodiation/desodiation repeating cycles. 展开更多
关键词 Bi4Ge3O12 NANOSHEETS LITHIUM-ion battery sodium-ion batter ANODE
原文传递
MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries 被引量:7
2
作者 Hai Yang Min Wang +2 位作者 Xiaowu Liu Yu Jiang Yan Yu 《Nano Research》 SCIE EI CAS CSCD 2018年第7期3844-3853,共10页
As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity ... As a typical two-dimensional transition metal dichalcogenide, molybdenum disulfide (MoS2) is considered a potential anode material for sodium-ion batteries (NIBs), due to its relatively high theoretical capacity (~ 670 mAh·g--1). However, the low electrical conductivity of MoS2 and its dramatic volume change during charge/discharge lead to severe capacity degradation and poor cycling stability. In this work, we developed a facile, scalable, and effective synthesis method to embed nanosized MoS2 into a thin film of three-dimensional (3D)-interconnected carbon nanofibers (CNFs), producing a MoS2/CNFs film. The free-standing MoS2/CNFs thin film can be used as anode for NIBs without additional binders or carbon black. The MoS2/CNFs electrode exhibits a high reversible capacity of 260 mAh·g^-1, with an extremely low capacity loss of 0.05 mAh·g^-1 per cycle after 2,600 cycles at a current density of 1 A·g^-1. This enhanced sodium storage performance is attributed to the synergistic effect and structural advantages achieved by embedding MoS2 in the 3D-interconnected carbon matrix. 展开更多
关键词 MOS2 sodium ion batter flexible electrode three-dimensional (3D)interconnected carbon nanofiber
原文传递
Nanostructured Bi2S3 encapsulated within three- dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries 被引量:10
3
作者 Chen Lu Zhenzhu Li +7 位作者 Lianghao Yu Li Zhang Zhou Xia Tao Jiang Wanjian Yin Shixue Dou Zhongfan Liu Jingyu Sun 《Nano Research》 SCIE EI CAS CSCD 2018年第9期4614-4626,共13页
Sodium-ion batteries (SIBs) have been increasingly attracting attention as a sustainable alternative to lithium-ion batteries for scalable energy storage. The key to advanced SIBs relies heavily upon the development... Sodium-ion batteries (SIBs) have been increasingly attracting attention as a sustainable alternative to lithium-ion batteries for scalable energy storage. The key to advanced SIBs relies heavily upon the development of reliable anodes. In this respect, Bi2S3 has been extensively investigated because of its high capacity, tailorable morpholog, and low cost However, the common practices of incorporating carbon species to enhance the electrical conductivity and accommodate the volume change of Bi2S3 anodes so as to boost their durability for Na storage have met with limited success. Herein, we report a simple method to realize the encapsulation of Bi2S3 nanorods within three-dimensional, nitrogen-doped graphene (3DNG) frameworks, targeting flexible and active composite anodes for SIBs. The Bi2S3/ 3DNG composites displayed outstanding Na storage behavior with a high reversible capacity (649 mAh·g^-1 at 62.5 mA·g^-1) and favorable durability (307 and 200 mAh·g^-1 after 100 cycles at 125 and 312.5 mA·g^-1, respectively). In-depth characterization by in situ X-ray diffraction revealed that the intriguing Na storage process of Bi2Sa was based upon a reversible reaction. Furthermore, a full, flexible SIB cell with Na0.4MnO2 cathode and as-prepared composite anode was successfully assembled, and holds a great promise for next-generation, wearable energy storage applications. 展开更多
关键词 sodium-ion batter composite anode bismuth sulfide three-dimensional nitrogen-doped graphene flexible
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部