Durability, rate capability, capacity and tap density are paramount performance metrics for promising anode materials, especially for sodium ion batteries. Herein, a carbon free mesoporous CoTiO3 micro-prism with a hi...Durability, rate capability, capacity and tap density are paramount performance metrics for promising anode materials, especially for sodium ion batteries. Herein, a carbon free mesoporous CoTiO3 micro-prism with a high tap density (1.8 gcm^-3) is newly developed by using a novel Co-Ti- bimetal organic framework (BMOF) as precursor. It is also interesting to find that the Co-Ti-BMOF derived carbon-free mesoporous CoTiO3 micro-prisms deliver a superior stable and more powerful Na^+ storage than other similar reported titania, titanate and their carbon composites. Its achieved ca- pacity retention ratio for 2,000 cycles is up to 90.1% at 5 A g^-1.展开更多
基金supported by the National Natural Science Foundation of China(51402155 and 21373107)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(YX03002)+2 种基金Jiangsu National Synergistic Innovation Center for Advanced Materials(SICAM)Foundation of NJUPT(NY217077)PolyU Start-up Fund for New Recruits(No.1-ZE8R)
文摘Durability, rate capability, capacity and tap density are paramount performance metrics for promising anode materials, especially for sodium ion batteries. Herein, a carbon free mesoporous CoTiO3 micro-prism with a high tap density (1.8 gcm^-3) is newly developed by using a novel Co-Ti- bimetal organic framework (BMOF) as precursor. It is also interesting to find that the Co-Ti-BMOF derived carbon-free mesoporous CoTiO3 micro-prisms deliver a superior stable and more powerful Na^+ storage than other similar reported titania, titanate and their carbon composites. Its achieved ca- pacity retention ratio for 2,000 cycles is up to 90.1% at 5 A g^-1.