In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the ...In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.展开更多
Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investig...Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.展开更多
Wolframite notation with benzyl arsonic acid and sodium butyl xanthate is studied,at first.It shows the efficiency of mineral processig is good when the two agents are added together.Then the synergism of sodium butyl...Wolframite notation with benzyl arsonic acid and sodium butyl xanthate is studied,at first.It shows the efficiency of mineral processig is good when the two agents are added together.Then the synergism of sodium butyl xanthate and benzyl arsonic acid is studied also by HPLC.展开更多
The surface species transformation of oxidized carrollite processing with NaHS and KBX was investigated.Flotation and contact angle tests indicate that the combination of NaHS and KBX takes a better flotation performa...The surface species transformation of oxidized carrollite processing with NaHS and KBX was investigated.Flotation and contact angle tests indicate that the combination of NaHS and KBX takes a better flotation performance than adding NaHS or KBX alone.Thermodynamic analysis,X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR) results confirm the stronger chemisorption of KBX occurs on the oxidized carrollite surface with NaHS,which is beneficial to remove the cobalt oxides,thus contributing to the superior floatability.Interestingly,less elemental sulfur was observed on the carrollite surface as the interaction of NaHS and KBX than adding NaHS alone.It suggests that elemental sulfur is not the main contributor to the restored floatability of oxidized carrollite through sulfidisation.This study provided a new perspective to correlate the surface species with xanthate adsorption and oxidized carrollite flotation through determining the various intermediate products.展开更多
Nano-drug delivery systems with multiple stimulus-responsive capabilities have superior response performance and efficient drug release.Nevertheless,it is sophisticated to construct multiple stimulus-responsive system...Nano-drug delivery systems with multiple stimulus-responsive capabilities have superior response performance and efficient drug release.Nevertheless,it is sophisticated to construct multiple stimulus-responsive systems where the two or more functional groups need to be introduced simultaneously.Xanthate,one functional group with pH and H2O2 stimulus responsiveness,has significant potential applications for building dual-responsive drug delivery system.Herein,we present a novel dual stimuli-responsive supramolecular drug delivery system by using sodium xanthate derivative(SXD)as guest molecule and quaternary ammonium capped pillar[5]arene(QAP5)as host molecule through host-guest interaction on the basis of electrostatic interaction.The amphiphile QAP5⊃SXD could self-assemble into vesicles to efficiently load the anti-cancer drug DOX.The experimental results showed that QAP5⊃SXD nanoparticles could achieve efficient drug delivery and controlled release in the tumor microenvironment.Cytotoxicity experiments proved that DOX@QAP5⊃SXD nanoparticles could significantly improve the anticancer efficiency of free DOX on cancer cells.The present study provides an efficient strategy to develop supramolecular nanocarriers with dual-responsiveness in one functional group for controlled drug release.展开更多
基金Projects(51504053,51374079)supported by the National Natural Science Foundation of ChinaProject(2015M571324)supported by the Postdoctoral Science Foundation of China
文摘In this paper,the effect of sodium butyl xanthate(NaBX)adsorption on the surface of bornite at different pH on flotation was studied by adsorption kinetic and thermodynamic.The flotation results demonstrated that the recovery was the highest when pH was 9 in NaBX solution(4×10^?5 mol/L).The adsorption kinetics showed the reaction of NaBX on the bornite conformed to the second order kinetic equation;it belonged to the multimolecular layer adsorption of Freundlich model;the maximum adsorption rate constant was 0.30 g/(10^?6 mol·min),and the equilibrium adsorption capacity was 2.70×10^?6 mol/g.Thermodynamic calculation results indicated that the adsorption process was spontaneous chemisorption,and the adsorption products of NaBX on bornite surface were cupric butyl xanthate,ferric butyl xanthate and dixanthogen,which were confirmed by infrared spectrum measurements.
基金Project(CZQ13002)supported by the Special Fund for Basic Scientific Research of Central Universities,China
文摘Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.
文摘Wolframite notation with benzyl arsonic acid and sodium butyl xanthate is studied,at first.It shows the efficiency of mineral processig is good when the two agents are added together.Then the synergism of sodium butyl xanthate and benzyl arsonic acid is studied also by HPLC.
基金supported by the Innovation Academy for Green Manufacture, Chinese Academy of Sciences (IAGM-2019A08)。
文摘The surface species transformation of oxidized carrollite processing with NaHS and KBX was investigated.Flotation and contact angle tests indicate that the combination of NaHS and KBX takes a better flotation performance than adding NaHS or KBX alone.Thermodynamic analysis,X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR) results confirm the stronger chemisorption of KBX occurs on the oxidized carrollite surface with NaHS,which is beneficial to remove the cobalt oxides,thus contributing to the superior floatability.Interestingly,less elemental sulfur was observed on the carrollite surface as the interaction of NaHS and KBX than adding NaHS alone.It suggests that elemental sulfur is not the main contributor to the restored floatability of oxidized carrollite through sulfidisation.This study provided a new perspective to correlate the surface species with xanthate adsorption and oxidized carrollite flotation through determining the various intermediate products.
基金supported by the National Natural Science Foundation of China(Nos.21877088.22171230)China Postdoctoral Science Foundation(No.2016M602861).
文摘Nano-drug delivery systems with multiple stimulus-responsive capabilities have superior response performance and efficient drug release.Nevertheless,it is sophisticated to construct multiple stimulus-responsive systems where the two or more functional groups need to be introduced simultaneously.Xanthate,one functional group with pH and H2O2 stimulus responsiveness,has significant potential applications for building dual-responsive drug delivery system.Herein,we present a novel dual stimuli-responsive supramolecular drug delivery system by using sodium xanthate derivative(SXD)as guest molecule and quaternary ammonium capped pillar[5]arene(QAP5)as host molecule through host-guest interaction on the basis of electrostatic interaction.The amphiphile QAP5⊃SXD could self-assemble into vesicles to efficiently load the anti-cancer drug DOX.The experimental results showed that QAP5⊃SXD nanoparticles could achieve efficient drug delivery and controlled release in the tumor microenvironment.Cytotoxicity experiments proved that DOX@QAP5⊃SXD nanoparticles could significantly improve the anticancer efficiency of free DOX on cancer cells.The present study provides an efficient strategy to develop supramolecular nanocarriers with dual-responsiveness in one functional group for controlled drug release.
文摘研究了斑铜矿的浮选行为,并通过吸附量测试、红外光谱、吸附动力学及热力学计算研究丁基钠黄药(简称Na BX)在斑铜矿表面的吸附机理.斑铜矿在pH为5~9时可浮性较好,药剂在矿物表面的吸附属Freundlich模型的多分子层吸附;当pH为12时可浮性差,属于Lamgmuir模型的单分层吸附. Na BX在矿物表面吸附符合二阶动力学方程,是自发进行的化学吸附过程,通过热力学计算得出pH为9时的吸附反应比pH为12时更容易发生.红外光谱测试表明,当pH为5~9时Na BX在斑铜矿表面的吸附产物为Cu(BX)_2,Fe(BX)_3和(BX)_2,而当pH为12时的吸附产物为Cu(BX)_2.