A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis...A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.展开更多
Facing the increasingly serious energy and environmental problems,the research and development of new energy storage technology and environment-friendly energy storage materials are imminent.As a typical lead-free fer...Facing the increasingly serious energy and environmental problems,the research and development of new energy storage technology and environment-friendly energy storage materials are imminent.As a typical lead-free ferroelectric with excellent dielectric properties,(Bi,Na)TiO_(3)(BNT)is supposed to be the most potential and competitive environment-friendly ceramic material and has become a research hotspot for dielectric energy storage in recent years.This paper first briefly introduces the basic physical principles and energy storage performance evaluation parameters of dielectric energy storage materials,then summarizes the critical research systems and related progress of BNT-based lead-free energy storage materials(bulk ceramics,films and multilayer ceramics)from the aspects of ions doping modification and multi-component composite optimization,and finally looks forward to the improvement direction and energy storage application prospect of BNT-based lead-free relaxor ferroelectric materials.展开更多
Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hy...Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hysteresis under low electric fields has remained a significant challenge.To address this long-standing issue,we have employed a collaborative approach that combines defect engineering,phase engineering,and relaxation engineering.The LKNNS-6BZH ceramic,when sintered at T_(sint)=1170℃,demonstrates an impressive electrostrain with a d_(33) value of 0.276%and 1379 pm·V^(-1)under 20 kV·cm^(-1),which is comparable to or even surpasses that of other lead-free and Pb(Zr,Ti)O_(3)ceramics.Importantly,the electrostrain performance of this ceramic remains stable up to a temperature of 125℃,with the lowest hysteresis observed at 9.73%under 40 kV·cm^(-1).These excellent overall performances are attributed to the presence of defect dipoles involving V′_(A)-V∙∙_(O) and B′_(Nb)-V∙∙O,the coexistence of R-O-T multiphase,and the tuning of the trade-off between long-range ordering and local heterogeneity.This work provides a lead-free alternative for piezoelectric actuators and a paradigm for designing piezoelectric materials with outstanding comprehensive performance under low electric fields.展开更多
New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesiz...New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesized following hydrothermal method followed by solid state sintering.The occurrence of MPB at the composition with x=0.55,at which rhombohedral and monoclinic phases are found to coexist,has been confirmed using powder XRD.This accounts for the occurrence of large remnant polarization when the sintered ceramic pellets are subjected to electric poling at 2KV/mm.Uniform microstructure of various compositions is confirmed by SEM imaging.Dielectric and piezoelectric properties of the samples are found to be comparable to those of commercial grade PZT.At the MPB,the d_(33)coefficient is found to be 556 pC/N,which is close to that of commercial grade PZT,which makes BNGN a promising material to substitute lead containing PZT in the near future.展开更多
(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric pr...(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as T_C were systematically investigated. The orthorhombic–tetragonal(O–T) two phases were detected in all(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase(CO/C T= 45/55), high piezoelectric properties of d 33= 239 pC/N, k_p= 34%, and P_r = 25.23 μC/cm^2 were obtained at x = 0.04. Moreover, a high T_C = 348 ℃ was also achieved in KNN–x BLZ ceramic at x = 0.04. These results indicate that (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 system is a promising candidate for high-temperature piezoelectric devices.展开更多
There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China...There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China is much larger than other countries or regions.The publications by Chinese researchers cover a broad spectrum on the preparations,structures,properties and applications of lead-free piezoelectric ceramics.This has motivated us to come out with a review on recent advances in development of lead-free piezoelectric ceramics in China.The emphases are especially on the preparation and electric properties of barium titanate-based materials,bismuth sodium titanate and related materials,alkaline niobate and related materials,bismuth layerstructured materials,as well as texture engineering of ceramics and some of their single crystals.Hopefully,this could give further impetus to the researchers to continue their e®orts in this promising area and also draw the attentions from legislature,research o±ce,industrial and publics.展开更多
In this paper,Sm-doped 0.96(K0.48 Na0.52)(Nb0.95 Sb0.05)–0.04 Bi0.5(Na0.82 K0.18)0.5 Zr O3(abbreviated as KNSN–0.04 BNKZ)lead-free piezoelectric ceramics were prepared by conventional solid-state sintering method an...In this paper,Sm-doped 0.96(K0.48 Na0.52)(Nb0.95 Sb0.05)–0.04 Bi0.5(Na0.82 K0.18)0.5 Zr O3(abbreviated as KNSN–0.04 BNKZ)lead-free piezoelectric ceramics were prepared by conventional solid-state sintering method and the effects of Sm2 O3 on the phase structure,microstructure,electrical and luminescent properties of KNSN–0.04 BNKZ potteries were studied.Results revealed that a single solid solution phase with pseudo-cubic perovskite structure was formed between KNSN–0.04 BNKZ and Sm2 O3.Existence of weak dielectric/ferroelectric properties with a diffuse dielectric anomaly and slim P–E hysteresis loops of the Sm-doped KNSN–0.04 BNKZ demonstrated the ferroelectric relaxor behavior of the KNNS–0.04 BNKZ–x Sm ceramics.Accordingly,the temperature stability and fatigue behavior of the modified ceramics were significantly improved.It was found that the KNSN–0.04 BNKZ ceramics with 0.002 mol Sm addition exhibited nearly temperature independent properties and fatigue-free behavior.Moreover,Sm-modified KNSN–0.04 BNKZ exhibits a bright photoluminescence with a strong orange emission under visible light irradiation.As a material with both electrical and luminescent properties,it has good application prospect in future optoelectronic components by integrating its luminescent and electrical properties.展开更多
Lead-free (K0.5Na0.5)(Nb1-xGex)O3 (KNN-xGe, where x = 0-0.01) piezo- electric ceramics were prepared by conventional ceramic processing. The effects of Ge4+cation doping on the phase compositions, microstructur...Lead-free (K0.5Na0.5)(Nb1-xGex)O3 (KNN-xGe, where x = 0-0.01) piezo- electric ceramics were prepared by conventional ceramic processing. The effects of Ge4+cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nbs+ ions as acceptors, and the Curie temperature (Tc) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020℃. Ge4+ doping less than 0.4 mol.% can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.展开更多
All-solid-state sodium-ion battery is regarded as the next generation battery to replace the current commercial lithium-ion battery, with the advantages of abundant sodium resources, low price and high-level safety. A...All-solid-state sodium-ion battery is regarded as the next generation battery to replace the current commercial lithium-ion battery, with the advantages of abundant sodium resources, low price and high-level safety. As one critical component in sodium-ion battery, solid-state electrolyte should possess superior operational safety and design simplicity, yet reasonable high room-temperature ionic conductivity. This paper gives a comprehensive review on the recent progress in solid-state electrolyte materials for sodium-ion battery, including inorganic ceramic/glass-ceramic, organic polymer and ceramic-polymer composite electrolytes, and also provides a comparison of the ionic conductivity in various solid-state electrolyte materials. The development of solid-state electrolytes suggests a bright future direction: all solid-state sodium-ion battery could be fully used to power all electric road vehicles, portable electronic devices and large-scale grid support.展开更多
Giant strains in(Bi_(0.5)Na_(0.5))TiO_(3) based ceramics are usually attributed to electric field induced nonpolar to polar phase transition.Whether it is an ergodic relaxor R3c/P4mm ferroelectric(FE)to long-range ord...Giant strains in(Bi_(0.5)Na_(0.5))TiO_(3) based ceramics are usually attributed to electric field induced nonpolar to polar phase transition.Whether it is an ergodic relaxor R3c/P4mm ferroelectric(FE)to long-range ordered FE phase transformation or a reversible P4bm antiferroelectric(AFE)to FE phase transition is still unclear.Herein,lead-free(0.88-x)(Bi_(0.5)Na_(0.5))TiO_(3)-0.12BaTiO_(3-x)NaNbO_(3) ceramics exhibit a compositionmodulated FE tetragonal P4mm to relaxor AFE tetragonal P4bm phase transition,in which double hysteresis loop,sprout-shaped S-E curves,near-zero quasi-static d33 together with a large volume change suggest the AFE characteristics of P4bm phase.An interesting finding is that the reversibility of fieldinduced AFE P4bm phase to FE P4mm phase transition strongly depends on the NN content,from being completely irreversible at x=0.01e0.02,to partially reversible at x=0.03e0.05,and finally to completely reversible at x=0.06e0.08.It is indicated that the variation of reversibility should be attributed to the change of relative free energy caused by decreasing the FE to AFE phase transition temperature with increasing the NN content.展开更多
(0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and e...(0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and energy storage properties of NBT-xBT-ST ceramics were investigated.All the NBT-xBT-ST ceramics showed single perovskite structure with a pseudocubic phase.Ba doping effectively suppressed grain growth,in favor of forming small and uniform grains.The ceramics with a composition of x=0.04,an optimized energy storage density(γ=0.47 J/cm^(3))and efficiency(η=48:67%),under an applied electric field of 50 kV/cm,should be a candidate for solid-state compact pulsed power capacitor materials.展开更多
Structural and dielectric properties of polycrystalline samples of lead-free (l-x)(Nal/2Bil/2)TiO3-xZnO, prepared using a high-temperature solid-state reaction method, were investigated in the composition range o...Structural and dielectric properties of polycrystalline samples of lead-free (l-x)(Nal/2Bil/2)TiO3-xZnO, prepared using a high-temperature solid-state reaction method, were investigated in the composition range of 0≤x≤0.10. Rietveld analyses of X-ray diffraction data indicated the formation of a single-phase hexagonal structure with R3c symmetry. Williamson-Hall approach was applied to estimate the apparent particle size and lattice strain of the compounds. Temperature dependence of dielectric constant showed that the addition of ZnO to (Na1/2Bi1/2)TiO3 shifted the phase transition temperature towards higher side, a property favourable for practical applications of these ceramics. Further, temperature dependent permittivity data provided low temperature coefficient of capacitance (TCC〈8%) up to 100℃. Furthermore, a decrease in the value of dielectric loss with an increase in ZnO content was observed.展开更多
(1-x)(K0.47sNa0.475Li0.os)(Nb0.sTa0.2)O3-xBiCoO3 (KNLNT-BC) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. Effects of the BC content on the phase structure, mi...(1-x)(K0.47sNa0.475Li0.os)(Nb0.sTa0.2)O3-xBiCoO3 (KNLNT-BC) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. Effects of the BC content on the phase structure, microstructure and electrical properties of KNLNT-BC ceramics were investigated. XRD patterns reveal that all the ceramic samples are in the pure perovskite-type structure, and the phase structure changes from the tetragonal to pseudo-cubic phase with the increase of the BC content. After the substitution of BC, the grain size is significantly reduced and relaxer behaviors are induced. By adding a small amount of BC to KNLNT ceramics, piezoelectric properties are improved, while further addition of BC makes the piezoelectric properties deteriorate markedly. The optimized electrical properties atx= 0.005 are as follows: d33 = 194 pC/N, kp = 0.44.展开更多
Bone tissue regeneration in critical-size defects is possible after implantation of a 3D scaffold and can be additionally enhanced once the scaffold is enriched with drugs or other factors supporting bone remodelling ...Bone tissue regeneration in critical-size defects is possible after implantation of a 3D scaffold and can be additionally enhanced once the scaffold is enriched with drugs or other factors supporting bone remodelling and healing.Sodium alendronate(Aln),a widely used anti-osteoporosis drug,exhibits strong inhibitory effect on bone resorption performed by osteoclasts.Thus,we propose a new approach for the treatment of bone defects in craniofacial region combining biocompatible titanium dioxide scaffolds and poly(L-lactide-co-glycolide)microparticles(MPs)loaded with Aln.The MPs were effectively attached to the surface of the scaffolds’pore walls by human recombinant collagen.Drug release from the scaffolds was characterized by initial burst(2466% of the drug released within first 24 h)followed by a sustained release phase(on average 5 mg of Aln released per day from Day 3 to Day 18).In vitro tests evidenced that Aln at concentrations of 5 and 2.5 mg/ml was not cytotoxic for MG-63 osteoblast-like cells(viability between 8166% and 9863% of control),but it prevented RANKL-induced formation of osteoclast-like cells from macrophages derived from peripheral blood mononuclear cells,as shown by reduced fusion capability and decreased tartrateresistant acid phosphatase 5b activity(5665% reduction in comparison to control after 8 days of culture).Results show that it is feasible to design the scaffolds providing required doses of Aln inhibiting osteoclastogenesis,reducing osteoclast activity,but not affecting osteoblast functions,which may be beneficial in the treatment of critical-size bone tissue defects.展开更多
基金Scientific Developing Foundation of Tianjin Education Commission,Grant/Award Number:2018ZD09National Natural Science Foundation of China,Grant/Award Numbers:51777138,52202282。
文摘A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.
基金supported by National Natural Science Foundation of China(52267002)Natural Science Foundation of Jiangxi Province(20212ACB204010)+1 种基金Science&Technology Research Project of Jiangxi Provincial Education Department(GJJ211301)the Graduate Innovation Fund of Jiangxi Province(YC2022-S884).
文摘Facing the increasingly serious energy and environmental problems,the research and development of new energy storage technology and environment-friendly energy storage materials are imminent.As a typical lead-free ferroelectric with excellent dielectric properties,(Bi,Na)TiO_(3)(BNT)is supposed to be the most potential and competitive environment-friendly ceramic material and has become a research hotspot for dielectric energy storage in recent years.This paper first briefly introduces the basic physical principles and energy storage performance evaluation parameters of dielectric energy storage materials,then summarizes the critical research systems and related progress of BNT-based lead-free energy storage materials(bulk ceramics,films and multilayer ceramics)from the aspects of ions doping modification and multi-component composite optimization,and finally looks forward to the improvement direction and energy storage application prospect of BNT-based lead-free relaxor ferroelectric materials.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.52032007 and 52072028)the National Key R&D Program(No.2022YFB3807400)+1 种基金the Basic Science Center Project of National Natural Science Foundation of China(No.52388201)Tsinghua University-Toyota Research Center.
文摘Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hysteresis under low electric fields has remained a significant challenge.To address this long-standing issue,we have employed a collaborative approach that combines defect engineering,phase engineering,and relaxation engineering.The LKNNS-6BZH ceramic,when sintered at T_(sint)=1170℃,demonstrates an impressive electrostrain with a d_(33) value of 0.276%and 1379 pm·V^(-1)under 20 kV·cm^(-1),which is comparable to or even surpasses that of other lead-free and Pb(Zr,Ti)O_(3)ceramics.Importantly,the electrostrain performance of this ceramic remains stable up to a temperature of 125℃,with the lowest hysteresis observed at 9.73%under 40 kV·cm^(-1).These excellent overall performances are attributed to the presence of defect dipoles involving V′_(A)-V∙∙_(O) and B′_(Nb)-V∙∙O,the coexistence of R-O-T multiphase,and the tuning of the trade-off between long-range ordering and local heterogeneity.This work provides a lead-free alternative for piezoelectric actuators and a paradigm for designing piezoelectric materials with outstanding comprehensive performance under low electric fields.
文摘New lead-free piezoceramic nanocomposites of Boron Sodium Gadolinium Niobate(BNGN),with general formula(1-x)B_(0.5)Na_(0.5)GdO3xB_(0.5)Na_(0.5)NbO_(3),exhibiting a Morphotropic Phase Boundary(MPB),have been synthesized following hydrothermal method followed by solid state sintering.The occurrence of MPB at the composition with x=0.55,at which rhombohedral and monoclinic phases are found to coexist,has been confirmed using powder XRD.This accounts for the occurrence of large remnant polarization when the sintered ceramic pellets are subjected to electric poling at 2KV/mm.Uniform microstructure of various compositions is confirmed by SEM imaging.Dielectric and piezoelectric properties of the samples are found to be comparable to those of commercial grade PZT.At the MPB,the d_(33)coefficient is found to be 556 pC/N,which is close to that of commercial grade PZT,which makes BNGN a promising material to substitute lead containing PZT in the near future.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20130006110006)National Natural Science Foundation of China(Grant Nos.51272023 and 51472026)
文摘(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as T_C were systematically investigated. The orthorhombic–tetragonal(O–T) two phases were detected in all(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase(CO/C T= 45/55), high piezoelectric properties of d 33= 239 pC/N, k_p= 34%, and P_r = 25.23 μC/cm^2 were obtained at x = 0.04. Moreover, a high T_C = 348 ℃ was also achieved in KNN–x BLZ ceramic at x = 0.04. These results indicate that (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 system is a promising candidate for high-temperature piezoelectric devices.
基金supports from The National Nature Science Foundation of China(NSFC,Nos.50072039,20151003,50572113,50932007)The Ministry of Sciences and Technology of China(MOST)through 973-projects(Nos.2002CB613307,2009CB623305)+3 种基金863-Projects(Nos.2001AA325070,2006AA03Z430)The Science and Technology Commission of Shanghai Municipality(Nos.05JC14079,08JC1420500,10XD1404700)Shanghai Institute of Ceramics(No.SCX200409)are gratefully acknowledged.
文摘There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China is much larger than other countries or regions.The publications by Chinese researchers cover a broad spectrum on the preparations,structures,properties and applications of lead-free piezoelectric ceramics.This has motivated us to come out with a review on recent advances in development of lead-free piezoelectric ceramics in China.The emphases are especially on the preparation and electric properties of barium titanate-based materials,bismuth sodium titanate and related materials,alkaline niobate and related materials,bismuth layerstructured materials,as well as texture engineering of ceramics and some of their single crystals.Hopefully,this could give further impetus to the researchers to continue their e®orts in this promising area and also draw the attentions from legislature,research o±ce,industrial and publics.
基金the National Key R&D Program of China(No.2016YFB0402701)Innovation Team of Higher Educational Science and Technology Program in Shandong Province(No.2019KJA025)+3 种基金National Natural Science Foundation of China(Nos.51701091 and 51802137)Natural Science Foundation of Shandong Province of China(Nos.ZR2018MEM011 and ZR201709270099)Opening Project of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(Grant No.KLIFMD201705)Research Foundation of Liaocheng University(No.318011906)。
文摘In this paper,Sm-doped 0.96(K0.48 Na0.52)(Nb0.95 Sb0.05)–0.04 Bi0.5(Na0.82 K0.18)0.5 Zr O3(abbreviated as KNSN–0.04 BNKZ)lead-free piezoelectric ceramics were prepared by conventional solid-state sintering method and the effects of Sm2 O3 on the phase structure,microstructure,electrical and luminescent properties of KNSN–0.04 BNKZ potteries were studied.Results revealed that a single solid solution phase with pseudo-cubic perovskite structure was formed between KNSN–0.04 BNKZ and Sm2 O3.Existence of weak dielectric/ferroelectric properties with a diffuse dielectric anomaly and slim P–E hysteresis loops of the Sm-doped KNSN–0.04 BNKZ demonstrated the ferroelectric relaxor behavior of the KNNS–0.04 BNKZ–x Sm ceramics.Accordingly,the temperature stability and fatigue behavior of the modified ceramics were significantly improved.It was found that the KNSN–0.04 BNKZ ceramics with 0.002 mol Sm addition exhibited nearly temperature independent properties and fatigue-free behavior.Moreover,Sm-modified KNSN–0.04 BNKZ exhibits a bright photoluminescence with a strong orange emission under visible light irradiation.As a material with both electrical and luminescent properties,it has good application prospect in future optoelectronic components by integrating its luminescent and electrical properties.
基金The authors thank Jianqiang Zhou for his technical help with SEM measurements. This work was supported by the National Natural Science Foundation of China (Grant No. 21371056) and the Fundamental Research Funds for the Central Universities (Grant No. 2015ZZD04).
文摘Lead-free (K0.5Na0.5)(Nb1-xGex)O3 (KNN-xGe, where x = 0-0.01) piezo- electric ceramics were prepared by conventional ceramic processing. The effects of Ge4+cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nbs+ ions as acceptors, and the Curie temperature (Tc) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020℃. Ge4+ doping less than 0.4 mol.% can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.
基金supported by National University of Singapore, the National Natural Science Foundation of China (NSFC 51572182, 11502036, 11372104, 11632004)the Natural Science Fund of the city of Chongqing (cstc2015jcyj A0577)The Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China (No. 2016YFE0125900)
文摘All-solid-state sodium-ion battery is regarded as the next generation battery to replace the current commercial lithium-ion battery, with the advantages of abundant sodium resources, low price and high-level safety. As one critical component in sodium-ion battery, solid-state electrolyte should possess superior operational safety and design simplicity, yet reasonable high room-temperature ionic conductivity. This paper gives a comprehensive review on the recent progress in solid-state electrolyte materials for sodium-ion battery, including inorganic ceramic/glass-ceramic, organic polymer and ceramic-polymer composite electrolytes, and also provides a comparison of the ionic conductivity in various solid-state electrolyte materials. The development of solid-state electrolytes suggests a bright future direction: all solid-state sodium-ion battery could be fully used to power all electric road vehicles, portable electronic devices and large-scale grid support.
基金Financial support from the National Natural Science Foundation of China(Grant No.52072103 and U19A2087)the AHPU innovation team project(S022021058)is gratefully acknowledged.
文摘Giant strains in(Bi_(0.5)Na_(0.5))TiO_(3) based ceramics are usually attributed to electric field induced nonpolar to polar phase transition.Whether it is an ergodic relaxor R3c/P4mm ferroelectric(FE)to long-range ordered FE phase transformation or a reversible P4bm antiferroelectric(AFE)to FE phase transition is still unclear.Herein,lead-free(0.88-x)(Bi_(0.5)Na_(0.5))TiO_(3)-0.12BaTiO_(3-x)NaNbO_(3) ceramics exhibit a compositionmodulated FE tetragonal P4mm to relaxor AFE tetragonal P4bm phase transition,in which double hysteresis loop,sprout-shaped S-E curves,near-zero quasi-static d33 together with a large volume change suggest the AFE characteristics of P4bm phase.An interesting finding is that the reversibility of fieldinduced AFE P4bm phase to FE P4mm phase transition strongly depends on the NN content,from being completely irreversible at x=0.01e0.02,to partially reversible at x=0.03e0.05,and finally to completely reversible at x=0.06e0.08.It is indicated that the variation of reversibility should be attributed to the change of relative free energy caused by decreasing the FE to AFE phase transition temperature with increasing the NN content.
基金supported by National Natural Science Foundation of China(Grant No.51767010)and Science&Technology Key Research Project of Jiangxi Provincial Education Department(Grant No.GJJ170760).
文摘(0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and energy storage properties of NBT-xBT-ST ceramics were investigated.All the NBT-xBT-ST ceramics showed single perovskite structure with a pseudocubic phase.Ba doping effectively suppressed grain growth,in favor of forming small and uniform grains.The ceramics with a composition of x=0.04,an optimized energy storage density(γ=0.47 J/cm^(3))and efficiency(η=48:67%),under an applied electric field of 50 kV/cm,should be a candidate for solid-state compact pulsed power capacitor materials.
基金The financial support,by the Department of Science and Technology,New Delhi (Grant No. SR/S2/CMP-17/2008)
文摘Structural and dielectric properties of polycrystalline samples of lead-free (l-x)(Nal/2Bil/2)TiO3-xZnO, prepared using a high-temperature solid-state reaction method, were investigated in the composition range of 0≤x≤0.10. Rietveld analyses of X-ray diffraction data indicated the formation of a single-phase hexagonal structure with R3c symmetry. Williamson-Hall approach was applied to estimate the apparent particle size and lattice strain of the compounds. Temperature dependence of dielectric constant showed that the addition of ZnO to (Na1/2Bi1/2)TiO3 shifted the phase transition temperature towards higher side, a property favourable for practical applications of these ceramics. Further, temperature dependent permittivity data provided low temperature coefficient of capacitance (TCC〈8%) up to 100℃. Furthermore, a decrease in the value of dielectric loss with an increase in ZnO content was observed.
文摘(1-x)(K0.47sNa0.475Li0.os)(Nb0.sTa0.2)O3-xBiCoO3 (KNLNT-BC) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. Effects of the BC content on the phase structure, microstructure and electrical properties of KNLNT-BC ceramics were investigated. XRD patterns reveal that all the ceramic samples are in the pure perovskite-type structure, and the phase structure changes from the tetragonal to pseudo-cubic phase with the increase of the BC content. After the substitution of BC, the grain size is significantly reduced and relaxer behaviors are induced. By adding a small amount of BC to KNLNT ceramics, piezoelectric properties are improved, while further addition of BC makes the piezoelectric properties deteriorate markedly. The optimized electrical properties atx= 0.005 are as follows: d33 = 194 pC/N, kp = 0.44.
基金supported by National Science Centre,Poland(2013/09/N/ST8/00309)Norwegian Research Council(228415)BMBF,Germany(GoBone German-Polish bilateral project 01DS16010A).
文摘Bone tissue regeneration in critical-size defects is possible after implantation of a 3D scaffold and can be additionally enhanced once the scaffold is enriched with drugs or other factors supporting bone remodelling and healing.Sodium alendronate(Aln),a widely used anti-osteoporosis drug,exhibits strong inhibitory effect on bone resorption performed by osteoclasts.Thus,we propose a new approach for the treatment of bone defects in craniofacial region combining biocompatible titanium dioxide scaffolds and poly(L-lactide-co-glycolide)microparticles(MPs)loaded with Aln.The MPs were effectively attached to the surface of the scaffolds’pore walls by human recombinant collagen.Drug release from the scaffolds was characterized by initial burst(2466% of the drug released within first 24 h)followed by a sustained release phase(on average 5 mg of Aln released per day from Day 3 to Day 18).In vitro tests evidenced that Aln at concentrations of 5 and 2.5 mg/ml was not cytotoxic for MG-63 osteoblast-like cells(viability between 8166% and 9863% of control),but it prevented RANKL-induced formation of osteoclast-like cells from macrophages derived from peripheral blood mononuclear cells,as shown by reduced fusion capability and decreased tartrateresistant acid phosphatase 5b activity(5665% reduction in comparison to control after 8 days of culture).Results show that it is feasible to design the scaffolds providing required doses of Aln inhibiting osteoclastogenesis,reducing osteoclast activity,but not affecting osteoblast functions,which may be beneficial in the treatment of critical-size bone tissue defects.