Temperature extremes represent an important limiting factor to plant growth and productivity. Low concentration of hydrogen sulfide (H2S) has been proven to function in physiological responses to various stresses. T...Temperature extremes represent an important limiting factor to plant growth and productivity. Low concentration of hydrogen sulfide (H2S) has been proven to function in physiological responses to various stresses. The present study evaluated the effect of foliar application of wheat seedlings with a H2S donor, sodium hydrosulfide (NariS), on the response to acute heat stress. The results showed that pretreatment with NariS could promote heat tolerance of wheat seedlings in a dose-depen- dent manner. Again, it was verified that H2S, rather than other sulfur-containing components or sodion derived from NariS solution, should contribute to the positive role in promoting wheat seedlings against heat stress. To further study antioxidant mechanisms of NariS-induced heat tolerance, superoxide dismutase (SOD, EC 1.15.1.1 ), catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11 ) activities, and HzS, hydrogen peroxide (H2O2), malonaldehyde (MDA), and soluble sugar contents in wheat seedlings were determined. The results showed that, under heat stress, the activities of SOD, CAT, and APX, H2S, H2O2, MDA, and soluble sugar contents in NaHS-pretreated seedlings and its control all increased. Meanwhile, NaHS-pretreated seedlings showed higher antioxidant enzymes activities and gene expression levels as well as the H2S and soluble sugar levels, and lower H2O2, MDA contents induced by heat stress. While little effect was detected in antioxidant enzymes activities and soluble substances contents in pretreated wheat seedlings compared with its control under normal culture conditions (data not shown). All of our results suggested that exogenous NariS could alleviate oxidative damage and improve heat tolerance by regulating the antioxidant system in wheat seedlings under heat stress.展开更多
BACKGROUND: It has been reported that high-dose salicylates improve free fatty acids (FFAs)-induced insulin resistance and beta-cell dysfunction in vitro, but the mechanism remains uncertain. In insulin-resistant rats...BACKGROUND: It has been reported that high-dose salicylates improve free fatty acids (FFAs)-induced insulin resistance and beta-cell dysfunction in vitro, but the mechanism remains uncertain. In insulin-resistant rats, we found that the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde (MDA), a marker of oxidative stress. Few studies have investigated the effects of salicylates on oxidative stress levels in insulin-resistant animal models. This study aimed to assess the effect of sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance. METHODS: Intralipid+heparin (IH), saline (SAL), or intralipid+heparin+sodium salicylate (IHS) were separately infused for 7 hours in normal Wistar rats. During the last 2 hours of the infusion, hyperinsulinemic-euglycemic clamping was 3 performed with [6-(3)H] glucose tracer. Plasma glucose was measured using the glucose oxygenase method. Plasma insulin and C-peptide were determined by radioimmunoassay. MDA levels and glutathione peroxidase (GSH-PX) activity in the liver and skeletal muscle were measured with colorimetric kits. RESULTS: Compared with infusion of SAL, IH infusion increased hepatic glucose production (HGP), and decreased glucose utilization (GU) (P<0.05). The elevation of plasma free fatty acids increased the MDA levels and decreased the GSH-PX activity in the liver and muscle (P<0.01). Sodium salicylate treatment decreased HGP, elevated GU (P<0.05), reduced MDA content by 60% (P<0.01), and increased the GSH-PX activity by 35% (P<0.05). CONCLUSIONS: Short-term elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and muscle. The administration of the anti-inflammatory drug sodium salicylate reduces the degree of oxidative stress, therefore improving hepatic and peripheral insulin resistance. IKK-beta and NF-kappa B provide potential pathogenic links to oxidative stress.展开更多
The liver is a primary site for xenobiotics detoxification, and its metabolism is readily altered by toxicity. The kidney is a common target for toxic xenobiotics due to its capacity to extract and concentrate toxic s...The liver is a primary site for xenobiotics detoxification, and its metabolism is readily altered by toxicity. The kidney is a common target for toxic xenobiotics due to its capacity to extract and concentrate toxic substances by highly specialized cells. So, they are the target organs of sodium fluoride toxicity. The aim of this review is to highlight on hepatorenal oxidative stress and pathophysiological changes induced by treatment of experimental animals with sodium fluoride. Our review shows fluoride toxicosis caused an elevation in the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, acid phosphatase, and the level of total bilirubin, and reduction in the serum levels of total protein, albumin, and globulins, and serious histopathological changes in the hepaic tissues. Also, NaF administration caused increases in serum urea, creatinine, uric acid, sodium ions, and chloride ions levels and serious histopathological changes in the kidney tissues. Treatment of experimental animals with NaF induced oxidative stress in hepatic and renal tissues. It can be concluded that administration of sodium fluoride to experimental animals induced oxidative stress, serious hepatorenal histopathological changes, and disturbance in liver and kidney functions. So, human should be advised to decrease exposure to sodium fluoride to decrease the harmful effects of NaF on liver and kidney.展开更多
Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- lik...Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- like effect. The aim of this study was to investigate its potential neurogenesis-enhancing effect and its role in repair following stress-induced neuronal damage. MTT assay was performed to measure the effect of SF on the growth of rat pheochromocytoma (PC12) cells;morphological and immunocytochemical meth- ods were used for assessing its differentiation-induc- ing action. Chronic mild stress (CMS) tests were per- formed to establish rat model of depression. The histopathology of animal brains was studied to ana- lyze CMS-induced morphological changes and the effect of SF on the repair of CMS-induced brain in- jury. The expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and the proliferation of neural stem cell/neural progenitor cells were assessed in the hippocampi of chronic mild stress (CMS)-induced depression-like model rats by immunohistochemistry and bromodeoxyuridine (BrdU)- incorporation assays, respectively. Our in vitro tests showed that SF promoted the proliferation of PC12 cells in the concentration range of 5 - 320 μM, and induced PC12 cells to differentiate to more mature cells with the morphological characteristics and mo- lecular marker of neuronal-like cells. In vivo tests showed that SF up-regulated the expressions of NGF and BDNF, and induced the proliferation of neural stem cell/neural progenitor cells in the hippocampi of CMS-induced depression-like model rats. This study provides evidences that SF shows neurogenesis-en- hancing effect, and its antidepressant-like effect of SF may be related directly and closely to its above-men- tioned effect.展开更多
Objective: To investigate the effect of creatine phosphate sodium(sodium phosphocreatine) on miRNA378, miRNA378* and calumenin m RNA in adriamycin-injured suckling mouse myocardium. Methods: The suckling mouse myocard...Objective: To investigate the effect of creatine phosphate sodium(sodium phosphocreatine) on miRNA378, miRNA378* and calumenin m RNA in adriamycin-injured suckling mouse myocardium. Methods: The suckling mouse myocardium of primary culture were randomly divided into control group, adriamycin group and treatment group. To identify the suckling mouse myocardium, Smooth muscle actin-α(α-SMA) was monitored by immunohistochemical method. Cardiac function was evaluated by transthoracic echocardiography. The mRNA change of miRNA378, miRNA378* and calumenin m RNA were detected by quantitative real-time PCR. The expression of calumenin and GRP78 were identified by western blot. Results: Mitochondrial damage and vacuolization were found in adriamycin-induced suckling mouse myocardium compared with control group, while creatine phosphate sodium could reduce this phenomenon. Compared with the control group, the mRNA of miRNA378, miRNA378* and calumenin in adriamycin group was reduced, while creatine phosphate sodium could increase this phenomenon. The expression of calumenin and GRP78 were decreased after adriamycin treatment in suckling mouse myocardiums, creatine phosphate sodium increased the expression of calumenin and GRP78. Conclusion: The results of this experiment might be closely related to the effects of that creatine phosphate sodium reduced the pathological mechanism of suckling mouse myocardium with myocarditis caused by adriamycin.展开更多
This study was conducted to comprehensively evaluate the effects of salicylic acid and sodium molybdate on cold tolerance of an ornamental plant Bougainvillea glabra and to provide a theoretical guidance for landscape...This study was conducted to comprehensively evaluate the effects of salicylic acid and sodium molybdate on cold tolerance of an ornamental plant Bougainvillea glabra and to provide a theoretical guidance for landscape maintenance.B.glabra plants were treated with 0.5 mmol/L salicylic acid and 2.0 μmol/L alone or in combination,and then exposed to low temperature stress before physiological indices were measured.The results showed that all salicylic acid and sodium molybdate treatments reduced the relative conductivity and malondialdehyde( MDA) content of B.glabra to varying extents under the stress of low temperature,and more significant effect was achieved by using the two agents in combination.Oxygen free radicals production rate increased with decreasing temperature from 20 to 6 ℃,but declined with temperature decreasing from 3 to-3 ℃.The SOD activity of the control( CK) was significantly lower than that of other treatments at 0 and-3 ℃.The treatments with salicylic acid and sodium molybdate alone and in combination increased POD activity of B.glabra plants,especially at 0 ℃,as the POD activity of treatments T1,T2 and T3 was significantly higher than that of CK at 0 ℃.In addition,under low temperature stress,the contents of soluble sugar,starch and proline increased initially and decreased subsequently with temperature decreasing.The soluble sugar content at 3 ℃,starch and proline contents at 0 and-3 ℃ in treatments with salicylic acid and sodium molybdate alone and in combination were significantly higher than those of CK.All above results proved that salicylic acid and sodium molybdate are able to improve cold tolerance of B.glabra,and better effect can be achieved by using them together.展开更多
Salinity is a major problem that seriously impacts agricultural production, particularly that of tomato (Solanum lycopersicum L.). However, the plant has the ability to associate with Arbuscular Mycorrhizal Fungi to b...Salinity is a major problem that seriously impacts agricultural production, particularly that of tomato (Solanum lycopersicum L.). However, the plant has the ability to associate with Arbuscular Mycorrhizal Fungi to better tolerate salt stress. Thus, thanks to the extension of the AMF hyphae, the hydromineral nutrition and the tolerance to excess toxic ions (Na<sup>+</sup> and Cl<sup>-</sup>) of the plant are optimized. In this context, the contribution of AMF to the salt stress tolerance of two tomato varieties under semi-controlled conditions was studied. To do this, the frequency and intensity of mycorrhization, the relative mycorrhizal dependency, the survival rates, the aerial and root dry weights, the mineral (P, K<sup>+</sup>, Na<sup>+</sup>) and proline contents of the plants subjected to four levels of salinity [0, 70, 140 and 210 mM of NaCl] were evaluated. All the parameters assessed appeared to be dependent on the variety, the fungal strain and the NaCl concentration. With the Lady Nema variety, inoculation with the Claroideoglomus etunicatum strain at [NaCl 140 mM] resulted in the highest frequencies (54%), intensities (40.47%), and relative mycorrhizal dependencies (19.65%). This same symbiotic couple recorded high survival rates (55%) and aerial (2.03 g) and root (0.50 g) dry weights. Significant contents of K<sup>+ </sup>(Leaves: 7.5 mg⋅g<sup>-1</sup>;Roots: 4.4 mg⋅g<sup>-1</sup> of dry matter), P (Leaves: 15.15 mg⋅g-1</sup> of dry matter) and proline (975 nmoles⋅g-1</sup> of fresh matter) were also recorded by this pair, with the lowest Na<sup>+</sup> contents (Leaves: 1.93 mg⋅g-1</sup>;Roots: 0.96 mg⋅g-1</sup> of dry matter). For the Mongal variety, at [NaCl 140 mM], the highest frequencies (50.36%), intensities (35.14%) and relative mycorrhizal dependencies (43.95%) were obtained thanks to inoculation with Rhizophagus fasciculatus. The highest survival rates (59%) and aerial (2.58 g) and root (0.79 g) dry weights were also obtained with this symbiotic couple. The contents of K<sup>+</sup> (Leaves: 6.1 mg⋅g-1</sup>;Roots: 3.09 mg⋅g-1 </sup>of dry matter), P (Leaves: 12.49 mg⋅g-1</sup> of dry matter) and proline (942 nmoles⋅g-1</sup> of fresh matter) the most important and those in Na<sup>+</sup> the lowest (Leaves: 2.03 mg⋅g-1</sup>;Roots: 1.53 mg⋅g-1</sup> of dry matter) were also recorded for this same pair. Thus, the best fungal partner for the Lady Nema variety is C. etunicatum, followed by F. mosseae and R. fasciculatus, while for the Mongal variety it is R. fasciculatus, followed by C. etunicatum and F. mosseae.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest of China (201203029)
文摘Temperature extremes represent an important limiting factor to plant growth and productivity. Low concentration of hydrogen sulfide (H2S) has been proven to function in physiological responses to various stresses. The present study evaluated the effect of foliar application of wheat seedlings with a H2S donor, sodium hydrosulfide (NariS), on the response to acute heat stress. The results showed that pretreatment with NariS could promote heat tolerance of wheat seedlings in a dose-depen- dent manner. Again, it was verified that H2S, rather than other sulfur-containing components or sodion derived from NariS solution, should contribute to the positive role in promoting wheat seedlings against heat stress. To further study antioxidant mechanisms of NariS-induced heat tolerance, superoxide dismutase (SOD, EC 1.15.1.1 ), catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11 ) activities, and HzS, hydrogen peroxide (H2O2), malonaldehyde (MDA), and soluble sugar contents in wheat seedlings were determined. The results showed that, under heat stress, the activities of SOD, CAT, and APX, H2S, H2O2, MDA, and soluble sugar contents in NaHS-pretreated seedlings and its control all increased. Meanwhile, NaHS-pretreated seedlings showed higher antioxidant enzymes activities and gene expression levels as well as the H2S and soluble sugar levels, and lower H2O2, MDA contents induced by heat stress. While little effect was detected in antioxidant enzymes activities and soluble substances contents in pretreated wheat seedlings compared with its control under normal culture conditions (data not shown). All of our results suggested that exogenous NariS could alleviate oxidative damage and improve heat tolerance by regulating the antioxidant system in wheat seedlings under heat stress.
基金supported by a grant from the Bureau of Education of Liaoning Province,China (No.20060999)
文摘BACKGROUND: It has been reported that high-dose salicylates improve free fatty acids (FFAs)-induced insulin resistance and beta-cell dysfunction in vitro, but the mechanism remains uncertain. In insulin-resistant rats, we found that the supplementation of sodium salicylate is associated with a reduction of plasma malondialdehyde (MDA), a marker of oxidative stress. Few studies have investigated the effects of salicylates on oxidative stress levels in insulin-resistant animal models. This study aimed to assess the effect of sodium salicylate on insulin sensitivity and to explore the potential mechanism by which it improves hepatic and peripheral insulin resistance. METHODS: Intralipid+heparin (IH), saline (SAL), or intralipid+heparin+sodium salicylate (IHS) were separately infused for 7 hours in normal Wistar rats. During the last 2 hours of the infusion, hyperinsulinemic-euglycemic clamping was 3 performed with [6-(3)H] glucose tracer. Plasma glucose was measured using the glucose oxygenase method. Plasma insulin and C-peptide were determined by radioimmunoassay. MDA levels and glutathione peroxidase (GSH-PX) activity in the liver and skeletal muscle were measured with colorimetric kits. RESULTS: Compared with infusion of SAL, IH infusion increased hepatic glucose production (HGP), and decreased glucose utilization (GU) (P<0.05). The elevation of plasma free fatty acids increased the MDA levels and decreased the GSH-PX activity in the liver and muscle (P<0.01). Sodium salicylate treatment decreased HGP, elevated GU (P<0.05), reduced MDA content by 60% (P<0.01), and increased the GSH-PX activity by 35% (P<0.05). CONCLUSIONS: Short-term elevation of fatty acids induces insulin resistance by enhancing oxidative stress levels in the liver and muscle. The administration of the anti-inflammatory drug sodium salicylate reduces the degree of oxidative stress, therefore improving hepatic and peripheral insulin resistance. IKK-beta and NF-kappa B provide potential pathogenic links to oxidative stress.
文摘The liver is a primary site for xenobiotics detoxification, and its metabolism is readily altered by toxicity. The kidney is a common target for toxic xenobiotics due to its capacity to extract and concentrate toxic substances by highly specialized cells. So, they are the target organs of sodium fluoride toxicity. The aim of this review is to highlight on hepatorenal oxidative stress and pathophysiological changes induced by treatment of experimental animals with sodium fluoride. Our review shows fluoride toxicosis caused an elevation in the serum activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, acid phosphatase, and the level of total bilirubin, and reduction in the serum levels of total protein, albumin, and globulins, and serious histopathological changes in the hepaic tissues. Also, NaF administration caused increases in serum urea, creatinine, uric acid, sodium ions, and chloride ions levels and serious histopathological changes in the kidney tissues. Treatment of experimental animals with NaF induced oxidative stress in hepatic and renal tissues. It can be concluded that administration of sodium fluoride to experimental animals induced oxidative stress, serious hepatorenal histopathological changes, and disturbance in liver and kidney functions. So, human should be advised to decrease exposure to sodium fluoride to decrease the harmful effects of NaF on liver and kidney.
文摘Ferulic acid (FA) is a ubiquitous phenolic acid of low toxicity, and sodium ferulate (SF) is its sodium salt. Our previous studies have revealed that FA shows neuroprotective effect and significant antidepressant- like effect. The aim of this study was to investigate its potential neurogenesis-enhancing effect and its role in repair following stress-induced neuronal damage. MTT assay was performed to measure the effect of SF on the growth of rat pheochromocytoma (PC12) cells;morphological and immunocytochemical meth- ods were used for assessing its differentiation-induc- ing action. Chronic mild stress (CMS) tests were per- formed to establish rat model of depression. The histopathology of animal brains was studied to ana- lyze CMS-induced morphological changes and the effect of SF on the repair of CMS-induced brain in- jury. The expressions of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and the proliferation of neural stem cell/neural progenitor cells were assessed in the hippocampi of chronic mild stress (CMS)-induced depression-like model rats by immunohistochemistry and bromodeoxyuridine (BrdU)- incorporation assays, respectively. Our in vitro tests showed that SF promoted the proliferation of PC12 cells in the concentration range of 5 - 320 μM, and induced PC12 cells to differentiate to more mature cells with the morphological characteristics and mo- lecular marker of neuronal-like cells. In vivo tests showed that SF up-regulated the expressions of NGF and BDNF, and induced the proliferation of neural stem cell/neural progenitor cells in the hippocampi of CMS-induced depression-like model rats. This study provides evidences that SF shows neurogenesis-en- hancing effect, and its antidepressant-like effect of SF may be related directly and closely to its above-men- tioned effect.
文摘Objective: To investigate the effect of creatine phosphate sodium(sodium phosphocreatine) on miRNA378, miRNA378* and calumenin m RNA in adriamycin-injured suckling mouse myocardium. Methods: The suckling mouse myocardium of primary culture were randomly divided into control group, adriamycin group and treatment group. To identify the suckling mouse myocardium, Smooth muscle actin-α(α-SMA) was monitored by immunohistochemical method. Cardiac function was evaluated by transthoracic echocardiography. The mRNA change of miRNA378, miRNA378* and calumenin m RNA were detected by quantitative real-time PCR. The expression of calumenin and GRP78 were identified by western blot. Results: Mitochondrial damage and vacuolization were found in adriamycin-induced suckling mouse myocardium compared with control group, while creatine phosphate sodium could reduce this phenomenon. Compared with the control group, the mRNA of miRNA378, miRNA378* and calumenin in adriamycin group was reduced, while creatine phosphate sodium could increase this phenomenon. The expression of calumenin and GRP78 were decreased after adriamycin treatment in suckling mouse myocardiums, creatine phosphate sodium increased the expression of calumenin and GRP78. Conclusion: The results of this experiment might be closely related to the effects of that creatine phosphate sodium reduced the pathological mechanism of suckling mouse myocardium with myocarditis caused by adriamycin.
基金Supported by Applied Basic Research Project of Yunnan Province(2017FD087)National Natural Science Foundation of China(31660559)
文摘This study was conducted to comprehensively evaluate the effects of salicylic acid and sodium molybdate on cold tolerance of an ornamental plant Bougainvillea glabra and to provide a theoretical guidance for landscape maintenance.B.glabra plants were treated with 0.5 mmol/L salicylic acid and 2.0 μmol/L alone or in combination,and then exposed to low temperature stress before physiological indices were measured.The results showed that all salicylic acid and sodium molybdate treatments reduced the relative conductivity and malondialdehyde( MDA) content of B.glabra to varying extents under the stress of low temperature,and more significant effect was achieved by using the two agents in combination.Oxygen free radicals production rate increased with decreasing temperature from 20 to 6 ℃,but declined with temperature decreasing from 3 to-3 ℃.The SOD activity of the control( CK) was significantly lower than that of other treatments at 0 and-3 ℃.The treatments with salicylic acid and sodium molybdate alone and in combination increased POD activity of B.glabra plants,especially at 0 ℃,as the POD activity of treatments T1,T2 and T3 was significantly higher than that of CK at 0 ℃.In addition,under low temperature stress,the contents of soluble sugar,starch and proline increased initially and decreased subsequently with temperature decreasing.The soluble sugar content at 3 ℃,starch and proline contents at 0 and-3 ℃ in treatments with salicylic acid and sodium molybdate alone and in combination were significantly higher than those of CK.All above results proved that salicylic acid and sodium molybdate are able to improve cold tolerance of B.glabra,and better effect can be achieved by using them together.
文摘Salinity is a major problem that seriously impacts agricultural production, particularly that of tomato (Solanum lycopersicum L.). However, the plant has the ability to associate with Arbuscular Mycorrhizal Fungi to better tolerate salt stress. Thus, thanks to the extension of the AMF hyphae, the hydromineral nutrition and the tolerance to excess toxic ions (Na<sup>+</sup> and Cl<sup>-</sup>) of the plant are optimized. In this context, the contribution of AMF to the salt stress tolerance of two tomato varieties under semi-controlled conditions was studied. To do this, the frequency and intensity of mycorrhization, the relative mycorrhizal dependency, the survival rates, the aerial and root dry weights, the mineral (P, K<sup>+</sup>, Na<sup>+</sup>) and proline contents of the plants subjected to four levels of salinity [0, 70, 140 and 210 mM of NaCl] were evaluated. All the parameters assessed appeared to be dependent on the variety, the fungal strain and the NaCl concentration. With the Lady Nema variety, inoculation with the Claroideoglomus etunicatum strain at [NaCl 140 mM] resulted in the highest frequencies (54%), intensities (40.47%), and relative mycorrhizal dependencies (19.65%). This same symbiotic couple recorded high survival rates (55%) and aerial (2.03 g) and root (0.50 g) dry weights. Significant contents of K<sup>+ </sup>(Leaves: 7.5 mg⋅g<sup>-1</sup>;Roots: 4.4 mg⋅g<sup>-1</sup> of dry matter), P (Leaves: 15.15 mg⋅g-1</sup> of dry matter) and proline (975 nmoles⋅g-1</sup> of fresh matter) were also recorded by this pair, with the lowest Na<sup>+</sup> contents (Leaves: 1.93 mg⋅g-1</sup>;Roots: 0.96 mg⋅g-1</sup> of dry matter). For the Mongal variety, at [NaCl 140 mM], the highest frequencies (50.36%), intensities (35.14%) and relative mycorrhizal dependencies (43.95%) were obtained thanks to inoculation with Rhizophagus fasciculatus. The highest survival rates (59%) and aerial (2.58 g) and root (0.79 g) dry weights were also obtained with this symbiotic couple. The contents of K<sup>+</sup> (Leaves: 6.1 mg⋅g-1</sup>;Roots: 3.09 mg⋅g-1 </sup>of dry matter), P (Leaves: 12.49 mg⋅g-1</sup> of dry matter) and proline (942 nmoles⋅g-1</sup> of fresh matter) the most important and those in Na<sup>+</sup> the lowest (Leaves: 2.03 mg⋅g-1</sup>;Roots: 1.53 mg⋅g-1</sup> of dry matter) were also recorded for this same pair. Thus, the best fungal partner for the Lady Nema variety is C. etunicatum, followed by F. mosseae and R. fasciculatus, while for the Mongal variety it is R. fasciculatus, followed by C. etunicatum and F. mosseae.