High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different tempera...High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.展开更多
Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60...Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60 time,absorbed dose, dose-rate, inhibitor and monomer concentration on the grafting yield were studied. Grafting yields of both AA and SSS onto FEP, respectively, increase with irradiation dose, but some saturation will appear at high dose and monomer concentration. The grafting yield increases with reaction time and then levels off. The graft- ing of SSS onto FEP is more difficult than the grafting of AA. The analysis of grafted membranes using DSC and FT-IR have been done.展开更多
目的研究聚对苯二甲酸丁二醇酯(PBT)接枝不同单体[丙烯酸(AA)、丙烯酰胺(AM)、苯乙烯磺酸钠(SSS)、AA+AM、AA+SSS]对血小板黏附及功能的影响。方法采用γ射线辐照将单体[丙烯酸(AA)、丙烯酰胺(AM)、苯乙烯磺酸钠(SSS)、AA+AM、AA+SSS]...目的研究聚对苯二甲酸丁二醇酯(PBT)接枝不同单体[丙烯酸(AA)、丙烯酰胺(AM)、苯乙烯磺酸钠(SSS)、AA+AM、AA+SSS]对血小板黏附及功能的影响。方法采用γ射线辐照将单体[丙烯酸(AA)、丙烯酰胺(AM)、苯乙烯磺酸钠(SSS)、AA+AM、AA+SSS]接枝到PBT表面,依据傅里叶变换红外光谱(FTIR)和润湿时间等指标表征接枝后的PBT;利用扫描电镜(SEM)观察接枝不同单体的PBT对血小板的活化、聚集情况,同时测定通过接枝不同单体的PBT的血小板浓度、最大聚集能力、CD62p阳性表达率、血小板低渗休克率(HSR),考察其对血小板粘附及功能的影响。结果FTIR上出现了AA、AM、SSS的特征吸收峰,且接枝后的材料亲水性明显改善,表明单体接枝成功;SEM结果显示,PBT原样导致的血小板活化聚集程度明显高于改性后的PBT;滤过PBT原样的血小板与血小板原样相比:血小板浓度为(533.00±4.58 vs 672.00±3.61)×10^(9)/L,血小板最大聚集率为(48.80±0.96 vs 58.60±1.37)%,CD62p阳性表达率为(45.35±0.58 vs 39.90±0.52)%,血小板HSR为(48.74±0.46 vs 51.86±0.93)%(P<0.05)。与PBT原样相比,接枝不同单体后的PBT材料导致的血小板损失和血小板功能损伤都明显下降(P<0.05),其中PBT-(AA+AM)对血小板的综合影响最小[血小板浓度(637.00±2.65)×10^(9)/L,血小板最大聚集率(62.45±0.61)%,CD62p阳性表达率(37.39±0.42)%,血小板HSR(53.51±0.58)%]。结论表面接枝AA+AM的PBT对血小板的黏附及功能损伤的综合影响明显小于接枝其他单体的PBT,有望进一步开发用于血小板制剂中去除白细胞的过滤材料。展开更多
Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in...Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.展开更多
文摘High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.
基金Supported partially by Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences (No.55180219)
文摘Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60 time,absorbed dose, dose-rate, inhibitor and monomer concentration on the grafting yield were studied. Grafting yields of both AA and SSS onto FEP, respectively, increase with irradiation dose, but some saturation will appear at high dose and monomer concentration. The grafting yield increases with reaction time and then levels off. The graft- ing of SSS onto FEP is more difficult than the grafting of AA. The analysis of grafted membranes using DSC and FT-IR have been done.
文摘目的研究聚对苯二甲酸丁二醇酯(PBT)接枝不同单体[丙烯酸(AA)、丙烯酰胺(AM)、苯乙烯磺酸钠(SSS)、AA+AM、AA+SSS]对血小板黏附及功能的影响。方法采用γ射线辐照将单体[丙烯酸(AA)、丙烯酰胺(AM)、苯乙烯磺酸钠(SSS)、AA+AM、AA+SSS]接枝到PBT表面,依据傅里叶变换红外光谱(FTIR)和润湿时间等指标表征接枝后的PBT;利用扫描电镜(SEM)观察接枝不同单体的PBT对血小板的活化、聚集情况,同时测定通过接枝不同单体的PBT的血小板浓度、最大聚集能力、CD62p阳性表达率、血小板低渗休克率(HSR),考察其对血小板粘附及功能的影响。结果FTIR上出现了AA、AM、SSS的特征吸收峰,且接枝后的材料亲水性明显改善,表明单体接枝成功;SEM结果显示,PBT原样导致的血小板活化聚集程度明显高于改性后的PBT;滤过PBT原样的血小板与血小板原样相比:血小板浓度为(533.00±4.58 vs 672.00±3.61)×10^(9)/L,血小板最大聚集率为(48.80±0.96 vs 58.60±1.37)%,CD62p阳性表达率为(45.35±0.58 vs 39.90±0.52)%,血小板HSR为(48.74±0.46 vs 51.86±0.93)%(P<0.05)。与PBT原样相比,接枝不同单体后的PBT材料导致的血小板损失和血小板功能损伤都明显下降(P<0.05),其中PBT-(AA+AM)对血小板的综合影响最小[血小板浓度(637.00±2.65)×10^(9)/L,血小板最大聚集率(62.45±0.61)%,CD62p阳性表达率(37.39±0.42)%,血小板HSR(53.51±0.58)%]。结论表面接枝AA+AM的PBT对血小板的黏附及功能损伤的综合影响明显小于接枝其他单体的PBT,有望进一步开发用于血小板制剂中去除白细胞的过滤材料。
基金Supported by Program for New Century Excellent Talents in University(NCET-07-0738)
文摘Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgA1-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgA1-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems. In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10^- 3 S·m^-1 was achieved for the polymer electrolyte.