The adsorption amount, ξ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer (FDN) and STPP. The experimental results s...The adsorption amount, ξ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer (FDN) and STPP. The experimental results showed that the presence of STPP could significantly improve the fluidity of cement paste and reduce the fluidity loss with FDN. There existed a competitive adsorption between STPP and FDN. STPP and calcium ions formed complexes; they preferentially adsorbed onto surface of cement particles and preempt adsorption points of FDN; and it reduced adsorption amount of FDN. In the absence of STPP, saturation adsorption amount of FDN was 5.93 mg/g; but when the dosage of STPP was 0.1%, it reduced to 4.3 mg/g (about 72.5%). The adsorption amount of FDN was reduced by STPP, but ξ-potential of cement particles enhanced and fluidity of cement paste increased because of strong negative charge effect of the complexes. Adsorption of the complexes would delay Ca^2+ into liquid and inhibit formation of active adsorption points. Then, content of FDN in liquid increased with the addition of STPP and ξ-potential of cement particles became stable. In this way, fluidity loss of cement paste reduced.展开更多
The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-r...The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electronic probe micro analysis (EPMA), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) measurements. The experimental results show that compared with STP addition, compositing STP with polycarboxylate (PC) plasticizer, the final setting time is prolonged from 0.5h to 2hs. While formulating STP with naphthalene-based plasticizer (NAP) or sulfonate melamine formaldehyde plasticizer (SMF), the final setting time is reduced to quarter of an hour. Similar changes can also be found in the rate of exothermic hydration and hydration degree. Formulating STP with suitable addition of PC can enhance the strength, while compositing STP and NAP or SMF weakens the strength. Besides, adding STP or STP and SMF, obvious movement (more than 1ev) of binding energy of Ca2p1/2 and Ca2p3/2 is detected. Compared with STP addition, content of the characteristic element (P) of STP is cut down form 1.1% to 0.49% by compositing STP with SMF. Furthermore, as hydration age increases, hydration inhibition in the presence of admixtures weakens and even disappears within 56 h.展开更多
There are reports on the use of chemicals like sodium tri polyphosphate (STPP) and foreign materials like pearl tapioca (locally called ‘sagu’), jelly (litchi) to adulterate freshwater prawn (Macrobrachium rosenberg...There are reports on the use of chemicals like sodium tri polyphosphate (STPP) and foreign materials like pearl tapioca (locally called ‘sagu’), jelly (litchi) to adulterate freshwater prawn (Macrobrachium rosenbergii) prior to freeze processing to increase their weight. Studies were, therefore, undertaken to determine the changes in product quality on the use of different concentrations of STPP, sagu and litchi under ice storage condition. Percent weight gain of prawn was 5.46, 18.87 and 23.50 when dipped in 2%, 4% and 6% STPP solution, respectively. In all cases maximum water uptake by prawn muscle was during the first 6 h with fastest weight gain with STPP solutions containing tap water compared to those of ice and tap water. Organoleptic quality of the STPP treated samples became brown and spongy after 8 h of dipping treatment under iced condition. Quality assessment studies conducted after injecting sagu and litchi in prawn muscle showed little or no difference with those of control samples during the first 6 h, which turned whitish and swollen with severe drip loss after 24 h of ice stored condition, indicating characteristics for easy identification of the injected shrimps by organoleptic method.展开更多
In this study,sodium tripolyphosphate(STPP)was used to promote the removal of organic pollutants in a zero-valent copper(ZVC)/O2 system under neutral conditions for the first time.20 mg/L p-nitrophenol(PNP)can be comp...In this study,sodium tripolyphosphate(STPP)was used to promote the removal of organic pollutants in a zero-valent copper(ZVC)/O2 system under neutral conditions for the first time.20 mg/L p-nitrophenol(PNP)can be completely decomposed within 120 min in the ZVC/O2/STPP system.The PNP degradation process followed pseudo-first-order kinetics and the degradation rate of PNP gradually increased upon the decreasing ZVC particle size.The optimal pH of the reaction system was 5.0.Our mechanism investigation showed that Cu+generated by ZVC corrosion was the main reducing agent for the activation of 02 to produce ROS.-OH was identified as the only ROS formed during the degradation of PNP and its production pathway was the double-electron activation of O2(O2→H2 O2→·OH).In this process,STPP did not only promote the release of Cu+through its complexation,but also promoted the production of OH by reducing the redox potential of Cu2+/Cu+.In addition,we could initiate and terminate the reaction by controlling the pH.At pH<8.1,ZVC/02/STPP could continuously degrade organic pollutants;at pH>8.1,the reaction was terminated.STPP was recycled to continuously promote the corrosion of ZVC and O2 activation as long as the pH was<8.1.This study provided a new and efficient way for O2 activation and organic contaminants removal.展开更多
基金Funded by the National Basic Research Program of China(973 Program)(2009CB23201)the National Natural Science Foundation of China(51378408)the Fundamental Research Funds for the Central Universities of China(WUT:2013-IV-036)
文摘The adsorption amount, ξ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer (FDN) and STPP. The experimental results showed that the presence of STPP could significantly improve the fluidity of cement paste and reduce the fluidity loss with FDN. There existed a competitive adsorption between STPP and FDN. STPP and calcium ions formed complexes; they preferentially adsorbed onto surface of cement particles and preempt adsorption points of FDN; and it reduced adsorption amount of FDN. In the absence of STPP, saturation adsorption amount of FDN was 5.93 mg/g; but when the dosage of STPP was 0.1%, it reduced to 4.3 mg/g (about 72.5%). The adsorption amount of FDN was reduced by STPP, but ξ-potential of cement particles enhanced and fluidity of cement paste increased because of strong negative charge effect of the complexes. Adsorption of the complexes would delay Ca^2+ into liquid and inhibit formation of active adsorption points. Then, content of FDN in liquid increased with the addition of STPP and ξ-potential of cement particles became stable. In this way, fluidity loss of cement paste reduced.
基金Funded by the Major State Basic Research Development Program of China (973 Program) (No. 2009CB623104)the National Technology R&D Program for the 11th Five-year Plan (No. 2006BAJ05B03)
文摘The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electronic probe micro analysis (EPMA), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) measurements. The experimental results show that compared with STP addition, compositing STP with polycarboxylate (PC) plasticizer, the final setting time is prolonged from 0.5h to 2hs. While formulating STP with naphthalene-based plasticizer (NAP) or sulfonate melamine formaldehyde plasticizer (SMF), the final setting time is reduced to quarter of an hour. Similar changes can also be found in the rate of exothermic hydration and hydration degree. Formulating STP with suitable addition of PC can enhance the strength, while compositing STP and NAP or SMF weakens the strength. Besides, adding STP or STP and SMF, obvious movement (more than 1ev) of binding energy of Ca2p1/2 and Ca2p3/2 is detected. Compared with STP addition, content of the characteristic element (P) of STP is cut down form 1.1% to 0.49% by compositing STP with SMF. Furthermore, as hydration age increases, hydration inhibition in the presence of admixtures weakens and even disappears within 56 h.
文摘There are reports on the use of chemicals like sodium tri polyphosphate (STPP) and foreign materials like pearl tapioca (locally called ‘sagu’), jelly (litchi) to adulterate freshwater prawn (Macrobrachium rosenbergii) prior to freeze processing to increase their weight. Studies were, therefore, undertaken to determine the changes in product quality on the use of different concentrations of STPP, sagu and litchi under ice storage condition. Percent weight gain of prawn was 5.46, 18.87 and 23.50 when dipped in 2%, 4% and 6% STPP solution, respectively. In all cases maximum water uptake by prawn muscle was during the first 6 h with fastest weight gain with STPP solutions containing tap water compared to those of ice and tap water. Organoleptic quality of the STPP treated samples became brown and spongy after 8 h of dipping treatment under iced condition. Quality assessment studies conducted after injecting sagu and litchi in prawn muscle showed little or no difference with those of control samples during the first 6 h, which turned whitish and swollen with severe drip loss after 24 h of ice stored condition, indicating characteristics for easy identification of the injected shrimps by organoleptic method.
基金financially supported by the Fundamental Research Funds for the Central Universities of ChinaKey Project of National Natural Science Foundation of China(No.41530636)
文摘In this study,sodium tripolyphosphate(STPP)was used to promote the removal of organic pollutants in a zero-valent copper(ZVC)/O2 system under neutral conditions for the first time.20 mg/L p-nitrophenol(PNP)can be completely decomposed within 120 min in the ZVC/O2/STPP system.The PNP degradation process followed pseudo-first-order kinetics and the degradation rate of PNP gradually increased upon the decreasing ZVC particle size.The optimal pH of the reaction system was 5.0.Our mechanism investigation showed that Cu+generated by ZVC corrosion was the main reducing agent for the activation of 02 to produce ROS.-OH was identified as the only ROS formed during the degradation of PNP and its production pathway was the double-electron activation of O2(O2→H2 O2→·OH).In this process,STPP did not only promote the release of Cu+through its complexation,but also promoted the production of OH by reducing the redox potential of Cu2+/Cu+.In addition,we could initiate and terminate the reaction by controlling the pH.At pH<8.1,ZVC/02/STPP could continuously degrade organic pollutants;at pH>8.1,the reaction was terminated.STPP was recycled to continuously promote the corrosion of ZVC and O2 activation as long as the pH was<8.1.This study provided a new and efficient way for O2 activation and organic contaminants removal.