期刊文献+
共找到1,252篇文章
< 1 2 63 >
每页显示 20 50 100
The Al_(2)O_(3)and Mn/Al_(2)O_(3)sorbents highly utilized in destructive sorption of NF_(3)
1
作者 Yanfei Pan Hejian Li +1 位作者 Li Zheng Xiufeng Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期54-62,共9页
NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Am... NF_(3)is commonly used as an etching and cleaning gas in semiconductor industry,however it is a strongly greenhouse gas.Therefore,the destruction of disposal NF_(3)is an urgent task to migrate the greenhouse effect.Among the technologies for NF_(3)abatement,the destructive sorption of NF_(3)over metal oxides sorbents is an effective way.Thus,the search for a highly reactive and utilized sorbent for NF_(3)destruction is in great demand.In this work,AlOOH supported on carbon-sphere(AlOOH/CS)as precursors were synthesized hydrothermally and heat-treated to prepare the Al_(2)O_(3)sorbents.The influence of AlOOH/CS hydrothermal temperatures on the reactivity of derived Al_(2)O_(3)sorbents for NF_(3)destruction was investigated,and it is shown that the Al2O3 from AlOOH/CS hydro-thermalized at 120℃is superior to others.Subsequently,the optimized Al_(2)O_(3)was covered by Mn(OH)x to prepare Mn/Al_(2)O_(3)sorbents via changing hydrothermal temperatures and Mn loadings.The results show that the Mn/Al_(2)O_(3)sorbents are more utilized than bare Al_(2)O_(3)in NF_(3)destructive sorption due to the promotional effect of Mn_(2)O_(3)as surface layer on the fluorination of Al_(2)O_(3)as substrate,especially the optimal 5%Mn/Al2O3(160℃)exhibits a utilization percentage as high as 90.4%,and remarkably exceeds all the sorbents reported so far.These findings are beneficial to develop more efficient sorbents for the destruction of NF_(3). 展开更多
关键词 Greenhouse gas NF_(3)destructive sorption sorbents Al_(2)O_(3) Mn/Al_(2)O_(3) REACTIVITY
下载PDF
Impact of impregnation pressure on desulfurization performance of Zn-based sorbents supported on semi-coke 被引量:10
2
作者 Xianrong Zheng Weiren Bao +3 位作者 Qingmai Jin Ruiyuan He Liping Chang Kechang Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期56-60,共5页
High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, resp... High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough. 展开更多
关键词 DESULFURIZATION high-pressure impregnation method semi-coke support ZnO sorbent
下载PDF
Recent progress of amine modified sorbents for capturing CO2 from flue gas 被引量:6
3
作者 Xinglei Zhao Qian Cui +5 位作者 BaodengWang Xueliang Yan Surinder Singh Feng Zhang Xing Gao Yonglong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2292-2302,共11页
Under the Paris agreement, China has committed to reducing CO_2 emissions by 60%–65% per unit of GDP by 2030.Since CO_2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissi... Under the Paris agreement, China has committed to reducing CO_2 emissions by 60%–65% per unit of GDP by 2030.Since CO_2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissions in China, it will be necessary to mitigate at least some of these emissions to achieve this goal. Studies by the International Energy Agency(IEA) indicate CCS technology has the potential to contribute 14% of global emission reductions, followed by 40% of higher energy efficiency and 35% of renewable energy, which is considered as the most promising technology to significantly reduce carbon emissions for current coal-fired power plants.Moreover, the announcement of a Chinese national carbon trading market in late 2017 signals an opportunity for the commercial deployment of CO_2 capture technologies.Currently, the only commercially demonstrated technology for post-combustion CO_2 capture technology from power plants is solvent-based absorption. While commercially viable, the costs of deploying this technology are high. This has motivated efforts to develop more affordable alternatives, including advanced solvents, membranes,and sorbent capture systems. Of these approaches, advanced solvents have received the most attention in terms of research and demonstration. In contrast, sorbent capture technology has less attention, despite its potential for much lower energy consumption due to the absence of water in the sorbent. This paper reviews recent progress in the development of sorbent materials modified by amine functionalities with an emphasis on material characterization methods and the effects of operating conditions on performance. The main problems and challenges that need to be overcome to improve the competitiveness of sorbent-based capture technologies are discussed. 展开更多
关键词 CO2 sorbent AMINE FLUE gas CO2 adsorption CO2 REGENERATION
下载PDF
Effects of Sorbents on the Partitioning and Speciation of Cu During Municipal Solid Waste Incineration 被引量:4
4
作者 周会 孙进 +2 位作者 蒙爱红 李清海 张衍国 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第Z1期1347-1351,共5页
Oxides of silicon, aluminium and calcium are normally dominant minerals during municipal solid waste(MSW)combustion. In flue gas, Si O2, Al2O3 and Ca O all act as sorbents capturing heavy metals(and semi-volatile orga... Oxides of silicon, aluminium and calcium are normally dominant minerals during municipal solid waste(MSW)combustion. In flue gas, Si O2, Al2O3 and Ca O all act as sorbents capturing heavy metals(and semi-volatile organics). To further understand the effect of sorbents during MSW combustion, the effects of Si O2, Al2O3 and Ca O on Cu partitioning were experimentally investigated by the combustion of synthetic MSW in a tubular furnace and their effects on Cu speciation were studied by thermodynamic equilibrium calculations using Chem Kin software. The experiments show that Ca O has the highest Cu sorption efficiency at 900 °C, followed by Al2O3 and Si O2. Thermodynamic equilibrium calculations show that for Cu the addition of Si O2 and Al2O3reduces the amount of liquid Cu Cl, which is more volatile. However, the addition of Ca O has little influence on chemical sorption of Cu, indicating that the sorption of Ca O is resulted from physical sorption. 展开更多
关键词 MUNICIPAL solid waste sorbent Heavy metal Tubular FURNACE THERMODYNAMIC equilibrium calculation
下载PDF
Effect of impregnation methods on sorbents made from lignite for desulfurization at middle temperature 被引量:3
5
作者 Yurong Dong Xiurong Ren +3 位作者 Meijun Wang Qiang He Liping Chang Weiren Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期783-789,共7页
With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.Th... With lignite after vacuum drying as the raw material,a series of Zn-based sorbents were prepared by static impregnation,ultrasonic-assisted impregnation,bubbling-assisted impregnation and high-pressure impregnation.The physical properties and the desulfurization performances of Zn-based sorbents were studied systematically by XRD,BET,AAS characterization techniques and the fixed-bed desulfurization evaluation apparatus.The sorbents obtained by high-pressure impregnation method have a larger specific surface area,pore volume and pore diameter comparing with other methods,which is conducive to the sulfidation reaction of hydrogen sulfide gas in the sorbent.The effects of pressure during the high-pressure impregnation and concentration of Zn(NO3)2 precursor solution on the sorbents properties and desulfurization behavior were investigated.The higher the impregnation pressure and the concentration of impregnation solution are,the greater the amount of the active components are uploaded.However,overhigh impregnation pressure can cause collapse and blocking of the carrier pore.The optimal operating condition of high-pressure impregnation method for preparing the sorbents was the impregnation pressure of 20 atm and the solution concentration of 41%.Under that condition,the sorbent had the best desulfurization ability with a sulfur capacity of 13.94 gS/100 gsorbent and a breakthrough time of 54 h.Its desulfurization precision and efficiency of removing H2S before sorbent breakthrough from the middle temperature gases of 400℃ can reach【5 ppm and】99%,respectively.Sorbents could be regenerated under the condition of 1 vol%O2,20 vol% H2O,0.5 vol% NH3,and N2balance gas.The regenerated sorbent could be used for repeated absorption of H2S with a slight decrease in desulfurization effect. 展开更多
关键词 DESULFURIZATION High pressure effects LIGNITE sorbents SORPTION ZINC
下载PDF
CO2 capture over molecular basket sorbents:Effects of SiO2 supports and PEG additive 被引量:4
6
作者 Lin Zhang Xiaoxing Wang +2 位作者 Mamoru Fujii Linjun Yang Chunshan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1030-1038,共9页
The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the foll... The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the COsorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher COsorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest COsorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiOparticles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for COand the stronger temperature dependence of COcapacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the COsorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG. 展开更多
关键词 CO2 capture Molecular basket sorbents Mesoporous molecular sieve Polyethylenimine(PEI) Polyethylene glycol(PEG)
下载PDF
Sb(Ⅴ) removal from copper electrorefining electrolyte: Comparative study by different sorbents 被引量:8
7
作者 Katereh SALARI Saeedeh HASHEMIAN Mohammad Taghi BAEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期440-449,共10页
Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrol... Removal of Sb(V) from copper electrolyte by different sorbents such as activated carbon, bentonite, kaolin, resin, zeolite and white sand was investigated. Adsorption capacity of Sb(V) removal from copper electrolyte was as follows: white sand 〈 anionic resin 〈 zeolite 〈 kaolin 〈 activated carbon 〈 bentonite. Bentonite was characterized using FTIR, XRF, XRD, SEM and BET methods. The results show specific surface area of 95 m2/g and particles size of 175 nm for bentonite. The optimum conditions for the maximum removal of Sb are contact time 10 min, 4 g bentonite and temperature of 40 ° C. The adsorption of Sb(V) on bentonite is followed by pseudo-second-order kinetic (R2=0.996 and k=9×10?5 g/(mg· min)). Thermodynamic results reveal that the adsorption of Sb(V) onto bentonite from copper electrolyte is endothermic and spontaneous process (ΔGΘ=?4806 kJ/(mol· K). The adsorption data fit both the Freundlich and Langmuir isotherm models. Bentonite has the maximum adsorption capacity of 10000 mg/g for adsorption of Sb(V) in copper electrolyte. The adsorption of Zn, Co, Cu and Bi that present in the copper electrolyte is very low and insignificant. 展开更多
关键词 antimony (V) BENTONITE copper electrolyte sorbent REMOVAL
下载PDF
Supported ionic liquid sorbents for CO_2 capture from simulated flue-gas 被引量:1
8
作者 Jiajia Ren Zheng Li +2 位作者 Yifeng Chen Zhuhong Yang Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2377-2384,共8页
Supported ionic liquid(IL) sorbents for CO_2 capture were prepared by impregnating tetramethylammonium glycinate([N1111][Gly]) into four types of porous materials in this study. The CO_2 adsorption behavior was invest... Supported ionic liquid(IL) sorbents for CO_2 capture were prepared by impregnating tetramethylammonium glycinate([N1111][Gly]) into four types of porous materials in this study. The CO_2 adsorption behavior was investigated in a thermogravimetric analyzer(TGA). Among them, poly(methyl methacrylate)(PMMA)-[N1111][Gly]exhibits the best CO_2 adsorption properties in terms of adsorption capacity and rate. The CO_2 adsorption capacity reaches up to 2.14 mmol·g-1 sorbent at 35 °C. The fast CO_2 adsorption rate of PMMA-[N1111][Gly] allows 60 min of adsorption equilibrium time at 35 °C and much shorter time of 4 min is achieved at 75 °C. Further, Avrami's fractional-order kinetic model was used and fitted well with the experiment data, which shows good consistency between experimental results and theoretical model. In addition, PMMA-[N1111][Gly] remained excellent durability in the continuous adsorption–desorption cycling test. Therefore, this stable PMMA-[N1111][Gly] sorbent has great potential to be used for fast CO_2 adsorption from flue-gas. 展开更多
关键词 CO2 ADSORPTION AMINO acid IONIC LIQUID Supported IONIC LIQUID sorbent ADSORPTION kinetics
下载PDF
Anion Defects Engineering of Ternary Nb-Based Chalcogenide Anodes Toward High-Performance Sodium-Based Dual-Ion Batteries 被引量:3
9
作者 Yangjie Liu Min Qiu +7 位作者 Xiang Hu Jun Yuan Weilu Liao Liangmei Sheng Yuhua Chen Yongmin Wu Hongbing Zhan Zhenhai Wen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期218-232,共15页
Sodium-based dual-ion batteries(SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIB... Sodium-based dual-ion batteries(SDIBs) have gained tremendous attention due to their virtues of high operating voltage and low cost, yet it remains a tough challenge for the development of ideal anode material of SDIBs featuring with high kinetics and long durability. Herein, we report the design and fabrication of N-doped carbon film-modified niobium sulfur–selenium(NbSSe/NC) nanosheets architecture, which holds favorable merits for Na^(+) storage of enlarged interlayer space, improved electrical conductivity, as well as enhanced reaction reversibility, endowing it with high capacity, high-rate capability and high cycling stability. The combined electrochemical studies with density functional theory calculation reveal that the enriched defects in such nanosheets architecture can benefit for facilitating charge transfer and Na+ adsorption to speed the electrochemical kinetics. The NbSSe/NC composites are studied as the anode of a full SDIBs by pairing the expanded graphite as cathode, which shows an impressively cyclic durability with negligible capacity attenuation over 1000 cycles at 0.5 A g^(-1), as well as an outstanding energy density of 230.6 Wh kg^(-1) based on the total mass of anode and cathode. 展开更多
关键词 NbSSe sodium-based dual-ion battery Anode Nanosheets architecture Anion defects engineering
下载PDF
Sorption of Pyruvic Acid with Weakly Basic Polymer Sorbents 被引量:3
10
作者 黄少凯 秦炜 戴猷元 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第6期868-871,共4页
Uptakes of pyruvic acid for two types of commercially available weakly basic polymer sorbents, D301G and D301R, have been measured over a wide pH range and at various salinities of MgSO4. The results show that the ove... Uptakes of pyruvic acid for two types of commercially available weakly basic polymer sorbents, D301G and D301R, have been measured over a wide pH range and at various salinities of MgSO4. The results show that the overloading adsorption of pyruvic acid occurs on both weakly basic polymer sorbents, and the overloading models can predict the experimental data of uptake very well. The overloading value for D301G is larger than that for D301R. The adsorption isotherm of pyruvic acid for both polymeric sorbents is greatly affected by the solution pH and MgSO4 concentration in the aqueous phase, and a high recovery efficiency of pyruvic acid from aqueous solution can be obtained at the solution pH around 2. 展开更多
关键词 pyruvic acid weakly basic polymer sorbents ADSORPTION PH
下载PDF
Effect of Ca/Mg molar ratio on the calcium-based sorbents 被引量:2
11
作者 Yumeng Li Qing Zhao +3 位作者 Xiaohui Mei Chengjun Liu Henrik Saxén Ron Zevenhoven 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2182-2190,共9页
Steelmaking industry faces urgent demands for both steel slag utilization and CO_(2)abatement.Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO_(2)capture.In this work,the c... Steelmaking industry faces urgent demands for both steel slag utilization and CO_(2)abatement.Ca and Mg of steel slag can be extracted by acid solution and used to prepare sorbents for CO_(2)capture.In this work,the calcium-based sorbents were prepared from stainless steel slag leachate by co-precipitation,and the initial CO_(2)chemisorption capacity of the calcium-based sorbent prepared from steel slag with the Ca and Mg molar ratio of 3.64:1 was 0.40 g/g.Moreover,the effect of Ca/Mg molar ratio on the morphology,structure,and CO_(2)chemisorption capacity of the calcium-based sorbents were investigated.The results show that the optimal Ca/Mg molar ratio of sorbent for CO_(2)capture was4.2:1,and the skeleton support effect of MgO in calcium-based sorbents was determined.Meanwhile,the chemisorption kinetics of the sorbents was studied using the Avrami-Erofeev model.There were two processes of CO_(2)chemisorption,and the activation energy of the first stage(reaction control)was found to be lower than that of the second stage(diffusion control). 展开更多
关键词 steel slag carbon dioxide capture sorbent CHEMISORPTION KINETICS
下载PDF
CO_(2) capture by double metal modified CaO-based sorbents from pyrolysis gases 被引量:1
12
作者 Xiaobin Chen Yuting Tang +3 位作者 Chuncheng Ke Chaoyue Zhang Sichun Ding Xiaoqian Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期40-49,共10页
High-temperature pyrolysis technology can effectively solve the problem of municipal solid waste pollution.However,the pyrolysis gas contains a large amount of CO_(2),which would adversely affect the subsequent utiliz... High-temperature pyrolysis technology can effectively solve the problem of municipal solid waste pollution.However,the pyrolysis gas contains a large amount of CO_(2),which would adversely affect the subsequent utilization.To address this problem,a novel method of co-precipitation modification with Ca,Mg and Zr metals was proposed to improve the CO_(2)capture performance.X-ray diffraction(XRD)patterns and energy dispersive X-ray spectroscopy analysis showed that the two inert supports MgO and CaZrO_(3)were uniformly distributed in the modified calcium-based sorbents.In addition,the XRD results indicated that CaZrO_(3)was produced by the reaction of ZrO_(2)and CaO at high temperatures.The effects of doping ratios,adsorption temperature,calcination temperature,CO_(2)concentration and calcination atmosphere on the adsorption capacity and cycle stability of the modified calcium-based sorbent were studied.The modified calcium-based sorbent achieved the best CO_(2)capture performance when the doping ratio was 10:1:1 with carbonation at 700℃ under 20%CO_(2)/80%N_(2)atmosphere and calcination at 900℃ under100%N_(2)atmosphere.After ten cycles,the average carbonation conversion rate of Ca-10 sorbent was 72%.Finally,the modified calcium-based sorbents successfully reduced the CO_(2)concentration of the pyrolysis gas from 37%to 5%. 展开更多
关键词 Pyrolysis gas CO_(2)capture CO-PRECIPITATION CaO-based sorbents Modified sorbents
下载PDF
Modification of CaO-based sorbents prepared from calcium acetate for CO_2 capture at high temperature 被引量:8
13
作者 Xiaotong Liu Junfei Shi +2 位作者 Liu He Xiaoxun Ma Shisen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期572-580,共9页
CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In ... CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area. 展开更多
关键词 CO2 capture CaO-based sorbent Carbonation conversion Cyclic stability Critical time Mesoporous structure
下载PDF
Identification of Ni_xS_y on Industrial Spent S Zorb Sorbents by Using XPS and TPR-MS 被引量:2
14
作者 Yuan Hui Qiu Limei +4 位作者 Xu Guangtong Xin Mudi Shi Yanqiang Chen Shuai Zou Kang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期42-47,共6页
Three industrial spent S Zorb sorbents extracted from production line were studied with XRD, TPR-MS and XPS. The characterization results of XPS and TPR-MS identified the existence of amorphous Ni_xS_y on industrial s... Three industrial spent S Zorb sorbents extracted from production line were studied with XRD, TPR-MS and XPS. The characterization results of XPS and TPR-MS identified the existence of amorphous Ni_xS_y on industrial spent S Zorb sorbents, while the existing XRD quantitative analysis methods can only provide the long-range order in phase information and the grain size of Ni metal. XPS is a powerful tool to investigate the chemical states of nickel atom and the depthwise distribution of nickel species on S Zorb sorbent. Ni_xS_y and Ni metal species coexist on the industrial spent sorbents, and their percentages to total nickel slightly change with the operating conditions in the surface layer. It proves that Ni_xS_y is a stable intermediate product rather than a transition state. The information can contribute to the better elucidation of S Zorb desulfurization mechanism and offer a new direction for selectivity optimization of industrial S Zorb sorbents. 展开更多
关键词 S Zorb sorbent nickel sulfide reaction mechanism X-ray photoelectron spectroscopy
下载PDF
Efficient Theoretical Screening of Solid Sorbents for CO<sub>2</sub>Capture Applications 被引量:1
15
作者 Yuhua Duan David Luebke Henry Henry Pennline 《International Journal of Clean Coal and Energy》 2012年第1期1-11,共11页
By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candi... By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of allowing identification of thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and the available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, which obtained either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycles. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and are further considered for ex- perimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate work- ing temperatures. In addition to introducing our computational screening procedure, in this presentation we will sum- marize our results for solid systems composed by alkali and alkaline earth metal oxides, hydroxides, and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O with SiO2/ZrO2 with different mixing ratios, our preliminary results showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. Overall these theoretical predictions are found to be in good agreement with available experimental findings. 展开更多
关键词 Ab Intiio THERMODYNAMICS CO2 sorbent and CAPTURE Technology DFT and PHONON Lattice Dynamics
下载PDF
Effect of pre-calcination for modified CaO-based sorbents on multiple carbonation/calcination cycles 被引量:2
16
作者 Xiaotong Liu Xiaoxun Ma +1 位作者 Liu He Shisen Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第10期1412-1421,共10页
In the present work,the effect of pre-calcination on carbonation conversion and cyclic stability of modi fied CaObased sorbent was investigated by thermogravimetric analyzer(TGA).The modi fied CaO-based sorbents with ... In the present work,the effect of pre-calcination on carbonation conversion and cyclic stability of modi fied CaObased sorbent was investigated by thermogravimetric analyzer(TGA).The modi fied CaO-based sorbents with CaAc_2 as precursor were respectively doped with different elements(Mg,Al,Ce,Zr and La).The speci fic surface area,pore volume and pore size distribution were tested by N_2 isothermal adsorption measurements.The phase compositions of sorbents were characterized by X-ray diffraction(XRD).The results showed that the cyclic stabilities of the sorbents were improved by pre-calcination.The pre-calcination was conducted at 900°C for 5 h in air by the muf fle furnace.With pre-calcination,the cyclic stabilities of sorbents could be as high as 96% after 22 cycles,such as CaO-Al,CaO-Ce and CaO-La.After contact with air,the carbonation conversions of spent sorbents with pre-calcination suddenly increased by about one-sixth due to the change of channel structure by hydration.Both the cyclic stability of sorbent and the durability of reactivation were related to the structural stability of sample,especially the stability of mesopores between 2 nm and 5.5 nm.The present work also provided an easy and low-cost method for reactivating the spent CaO-based sorbents. 展开更多
关键词 Ca O-based sorbent Cyclic stability Pre-calcination Reactivation
下载PDF
Granular Sorbents for Passive Environment Protection System during Severe Accidents with Total Loss of Power Supply at NPPs
17
作者 Alexey A. Bessonov Sergey A. Kulyukhin +2 位作者 Natalya A. Konovalova Lubov V. Mizina Igor A. Rumer 《Journal of Power and Energy Engineering》 2015年第4期29-34,共6页
Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences has developed some novel sorbents designed for the filter units of the passive filtration system for radioactive discharge from the int... Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences has developed some novel sorbents designed for the filter units of the passive filtration system for radioactive discharge from the intercontainment space during heavy accidents with a complete loss of electricity supply at nuclear power plants. These are granulated sorbents based on large-pore silica gel containing nanometric particles of Ag or Ag-Ni compounds (trademark Fizkhimin). The sorbents allow to remove various radioactive iodine species (inorganic ones and methyl iodide) from a steam-gas phase with at least 104 decontamination factor. The high sorption properties of Fizkhimin sorbent with Ag particles were confirmed during tests at a test facility of the TUV Sudwest company (Karlsruhe, Germany). This passive filtration system is installed at the 1st and 2nd units of the Kudankulam nuclear power plant (India) and it is unique in the world practice. 展开更多
关键词 NUCLEAR Power Plant sorbent RADIOACTIVE IODINE
下载PDF
Combination of Sorbents and Modification of Its Constituents to Enhance the Mopping Ability of Chemically Modified and Unmodified Biological Wastes on Crude Oil and Its Lower Fractions
18
作者 John Kanayochukwu Nduka 《Advances in Materials Physics and Chemistry》 2012年第3期126-148,共23页
Protein wastes (feathers, goat hair) and cellulosic wastes (corn cob, coconut husks) were collected, washed with detergent solution, thoroughly rinsed and sun dried for 2 days before drying in an oven and then ground,... Protein wastes (feathers, goat hair) and cellulosic wastes (corn cob, coconut husks) were collected, washed with detergent solution, thoroughly rinsed and sun dried for 2 days before drying in an oven and then ground, half of ground material was carbonized at a maximum temperature of 500?C after mixing with H2SO4.The carbonized parts were pulverized;both carbonized and uncarbonized sorbents were sieved into two particle sizes of 325 μm and 625 μm using mechanical sieve.1.5 g protein wastes and cellulosic wastes were each used to mop up spilled crude oil, diesel, kerosene and petrol (separately before combining) by encasing them in a sac like boom of 2cm x 2cm x 1cm dimension so as to determine the efficacy of waste sorbents in cleaning hydrocarbon spills. Results of Tables 1(a)-4(a), 1(b)-4(b) and 5-8 shows that the sorbents mopped, desorbed and retained an average of more than 500%, 350% and 300% of their weight of the hydrocarbon sorbates within average of 90 mins contact time, the volume of sorbates mopped up increased significantly when equal weight of activated and unactivated sorbents were combined, the results of equal combination of activated and unactivated sorbents at each particle size and contact time were compared with that of calculated values, high percentage retention observed were a function of mechanism of absorption/adsorption. Each sorbent have a distinct feature that enhances its mopping ability. Large volumes of the hydrocarbon liquids were recovered by mere pressing, the sorbates were mopped up in the order;crude oil > diesel > kerosene > petrol. Protein sorbents with oleophilic and aqua phobic properties absorbed more of all the hydrocarbon liquids than cellulosic sorbents at any particle size and contact, the later tend to be more abundant and therefore cost effective;it was observed that both carbonized and uncarbonized sorbents are good hydrocarbon mops and therefore good alternative to synthetic polyurethane foam already in use. Combination, particle size, activation of sorbents, contact time, viscosity and chain length of hydrocarbon determined the amount of sorbates absorbed/adsorbed, recovered or retained. The residual leachable oil (kerosene) in the sorbents were below 5% and does not constitute serious environmental menace when left in an open dump to decay being biodegradable waste, but a brighter application is that the waste sorbent can be used in making logs as alternative to fire wood or in making particle board for furniture. 展开更多
关键词 sorbent-Sorbate System sorbents COMBINATION Experimental and Calculated Value Adsorption/Absorption Contact Time RE-USE
下载PDF
Evaluation of Palladium-Based Sorbents for Trace Mercury Removal in Electricity Generation
19
作者 Christopher L. Munson Pradeep Indrakanti +2 位作者 Massood Ramezan Evan Granite Jenny Tennant 《International Journal of Clean Coal and Energy》 2014年第4期65-76,共12页
The development of warm-gas cleanup (WGCU) systems for synthesis gas (syngas) cleanup in in- tegrated gasification combined cycle (IGCC) power plants has the potential to lower the costs of generating power. WGCU incl... The development of warm-gas cleanup (WGCU) systems for synthesis gas (syngas) cleanup in in- tegrated gasification combined cycle (IGCC) power plants has the potential to lower the costs of generating power. WGCU includes the removal of mercury (Hg), present in coal, from the syngas. Carbon-based sorbents used for Hg removal are not suitable for high-temperature Hg removal in conjunction with the WGCU. The US Department of Energy’s National Energy Technology Laboratory’s (DOE/NETL) Office of Research & Development (ORD) has been developing various sorbent alternatives to address the problem of high-temperature Hg removal. This study presents analysis of the capture of Hg from syngas streams as a polishing step to attain US Environmental Protection Agency (EPA) Mercury and Air Toxics Standards (MATS) requirements for Hg (0.003 lb/GWhgross for new IGCC plants) using palladium (Pd) adsorbent being tested by DOE/NETL in association with Johnson Matthey (JM). For the present study, it was assumed that syngas is already cleaned to 5 parts per billion by weight (ppbw) Hg, and the Pd sorbent technology is used as a polishing step to achieve the EPA MATS requirements (0.003 lb/GWhgross, equivalent to 2 ppbw given representative process configuration and material flows). The incremental cost of Hg polishing and the additional capital cost needed were estimated for several scenarios/cases. These cases were differentiated by variance in the following parameters, which are important because they have direct im- pacts on additional capital costs ($/kW), and in turn impacts on the levelized cost of electricity (LCOE): 1) Pd cost (varied from $4,000 to $12,000/lb Pd);2) Gas hourly space velocity (SV) (varied from 500 to 13,500 h-1);3) Pd loading (varied between 2 w/w% Pd and 5 w/w% Pd);4) Sorbent make-up rate (varied between 3%, 1%). The ranges were chosen in order to reasonably reflect, in the cases that are analyzed, the actual fluctuations that have been observed in past *Corresponding author. experience in these important parameters that affect cost (e.g., the Pd cost has kept to within the $4 to 12 k/lb range in recent years). In the case of SV, the high and low points of the range are extremes beyond which costs would either be unreasonable, or increase in cost benefit would be negligible. For a typical case (i.e., using mid-range values of the parameters, including SV of 8000 h-1, 2% Pd loading, 3% make-up rate, $9500/lb Pd cost), the increase in LCOE due to the Pd-polishing system is approximately 0.4% and the additional capital cost is ~$10/kW. As a comparison, the incremental capital cost of conventional Hg removal in an IGCC plant is ~$4 to 8/kW, and the increase in the LCOE is less than 0.4%. Results indicate that in the range of SVs from 3500 h-1 to 10,000 h-1, the Hg-polishing step is expected to function adequately and with increase of LCOE limited to about 1% - 2%. The use of a Pd sorbent-based polishing system to reduce trace Hg levels to the EPA MATS requirements for new IGCC power generation appears to be feasible and reasonably cost-effective. 展开更多
关键词 PALLADIUM sorbent MERCURY GASIFICATION Integrated GASIFICATION Combined CYCLE COST
下载PDF
Analysis of solid sorbents for control and removal processes for elemental mercury from gas streams:a review
20
作者 Piotr Kunecki Dorota Czarna-Juszkiewicz Magdalena Wdowin 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第1期23-46,共24页
Due to the restriction such as the Minamata Convention as well as the IED of the European Commission,mercury removal from flue gases of coal-fired power plants(CPP)is an increasingly important environmental issue.This... Due to the restriction such as the Minamata Convention as well as the IED of the European Commission,mercury removal from flue gases of coal-fired power plants(CPP)is an increasingly important environmental issue.This makes this topic very crucial for both the energy industry and scientists.This paper shows how mercury arises from natural resources,i.e.,coals,through their combustion processes in CPP and considers the issue of mercury content in flue gases and solid-state coal combustion by-products.The main part of this paper presents a review of the solid sorbents available for elemental mercury control and removal processes,tested on a laboratory scale.The described solutions have a potential for wider usage in exhaust gas treatment processes in the energy production sector.These solutions represent the latest developments in the field of elemental mercury removal from gases.The authors present an overview of the wide range of solid sorbents and their modifications intended to increase affinity for Hg^(0).Among the presented sorbents are the wellknown activated carbon solutions but also novel modifications to these and other innovative sorbent proposals based on,e.g.,zeolites,biochars,other carbon-based materials,metal-organic frameworks.The paper presents a wide range of characteristics of the described sorbents,as well as the conditions for the Hg^(0) removal experiments summarizing the compendium of novel solid sorbent solutions dedicated to the removal of elemental mercury from gases. 展开更多
关键词 Solid sorbents Textural properties Elemental mercury removal Flue gas Gas stream
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部