期刊文献+
共找到80,940篇文章
< 1 2 250 >
每页显示 20 50 100
Solid Bi_(2)O_(3)-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO_(2) 被引量:1
1
作者 Xiaoyan Wang Safeer Jan +1 位作者 Zhiyong Wang Xianbo Jin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期803-811,共9页
CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met... CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction. 展开更多
关键词 BISMUTH carbon dioxide ELECTROCATALYSIS formate solid electroreduction
下载PDF
Bimetallic In_(2)O_(3)/Bi_(2)O_(3) Catalysts Enable Highly Selective CO_(2) Electroreduction to Formate within Ultra-Broad Potential Windows 被引量:1
2
作者 Zhongxue Yang Hongzhi Wang +7 位作者 Xinze Bi Xiaojie Tan Yuezhu Zhao Wenhang Wang Yecheng Zou Huai ping Wang Hui Ning Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期257-264,共8页
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet... CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR. 展开更多
关键词 bimetallic catalyst CO_(2)electrochemical reduction reaction formate oxygen vacancy wide potential window
下载PDF
1.42-fold enhancement of formate selectivity by linker conversion on the Zn-based metal organic framework catalyst
3
作者 Yayu Guan Yuyu Liu +2 位作者 Fanghua Ning Jin Yi Jiujun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期183-190,I0006,共9页
Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate... Electro-reduction of carbon dioxide(ERCO_(2)) is considered an effective method to alleviate the greenhouse effect and produce value-added chemicals.Achieving the dominant selectivity of Zn-based catalysts for formate remains a challenge.In this article,the ZnIn-E_(12) catalyst is successfully prepared by solvent assisted ligand exchange(SALE) method to convert organic ligands,achieving a Faradaic efficiency of 72.28% for formate at-1.26 V vs.RHE(V_(RHE)),which is 1.42 times higher than the original catalyst.Evidence shows that the successful conversion of organic ligands can transform the catalyst from the original large size polyhedron to cross-linked network of particles with a diameter of about 30 nm.The increased specific surface area can expose more active sites and facilitate the electrocatalytic conversion of CO_(2) to formate.This work is expected to provide inspiration for the regulation of formate selectivity and catalyst size in Zn-based catalysts. 展开更多
关键词 ELECTROCATALYST Carbon dioxide formate Linker conversion
下载PDF
In-situ regeneration of Bi^(0) active site to renew surface activation for long-term stable and efficient CO_(2)-to-formate electrosynthesis
4
作者 Haichuan He Congcheng Yang +6 位作者 Liu Deng Li Luo Yahui Jiang Liqiang Wang Yi Zhang Minghui Yang You-Nian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期703-711,共9页
CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operati... CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operation or storage,resulting in decreased catalytic performance.Herein,we report a efficient and stable BiIn@Cu-foam electrode through the in-situ regeneration of Bi^(0) active sites to renew the surface activation.The electronic structure of Bi site can be regulated by introducing In,thereby enhancing the adsorption strength of*OCHO.The optimized electrode exhibits over 90%FE_(formate)at a wide potential window(-0.9–-2.2 V),and formation rate for 3.15 mM cm^(-1)h^(-1).Especially,the electrode can maintain the high performance at continuously electrolysis for more than 300 h,or for more than 50 cycles,even repeated operation and storage for more than 2 years.This work provides a promising candidate and new insight to construct industrially viable stable Bi-based catalyst for formate electrosynthesis. 展开更多
关键词 In-situ regeneration Stability formate BISMUTH eCO_(2)RR
下载PDF
Porous Indium Nanocrystals on Conductive Carbon Nanotube Networks for High-Performance CO_(2)-to-Formate Electrocatalytic Conversion
5
作者 Liangping Xiao Rusen Zhou +4 位作者 Tianqi Zhang Xiaoxiang Wang Renwu Zhou Patrick J.Cullen Kostya(Ken)Ostrikov 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期413-421,共9页
Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high... Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high-value organics is crucial.Electrochemical CO_(2)reduction reaction(CO_(2)RR)is highly promising to convert CO_(2)into economically viable carbon-based chemicals or fuels under mild process conditions.Herein,mesoporous indium supported on multi-walled carbon nanotubes(mp-In@MWCNTs)is synthesized via a facile wet chemical method.The mp-In@MWCNTs electrocatalysts exhibit high CO_(2)RR performance in reducing CO_(2)into formate.An outstanding activity(current density-78.5 mA cm^(-2)),high conversion efficiency(Faradaic efficiency of formate over 90%),and persistent stability(∼30 h)for selective CO_(2)-to-formate conversion are observed.The outstanding CO_(2)RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network,which promote the adsorption and desorption of reactants and intermediates while improving electron transfer.These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO_(2)conversion. 展开更多
关键词 CO_(2)RR conductive network ELECTROCATALYSTS formate
下载PDF
Plasma-assisted synthesis of porous bismuth nanosheets for electrocatalytic CO_(2)-to-formate reduction
6
作者 Liangping Xiao Qizheng Zheng +5 位作者 Rusen Zhou Sifan Liu Yifan Zhao Yadong Zhao Renwu Zhou Kostya Ken Ostrikov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期19-28,共10页
The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces c... The electrochemical carbon dioxide reduction(eCO_(2)RR)to formate,driven by clean energy,is a promising approach for producing renewable chemicals and high-value fuels.Despite its potential,further development faces challenges due to limitations in electrocatalytic activity and durability,especially for nonnoble metal-based catalysts.Here,naturally abundant bismuth-based nanosheets that can effectively drive CO_(2)-to-formate electrocatalytic reduction are prepared using the plasma-activated Bi_(2)Se_(3) followed by a reduction process.Thus-obtained plasma-activated Bi nanosheets(P-BiNS)feature ultrathin structures and high surface areas.Such nanostructures ensure the P-BiNS with outstanding eCO_(2)RR catalytic performance,highlighted by the current density of over 80 mA cm^(-2) and a formate Faradic efficiency of>90%.Furthermore,P-BiNS catalysts demonstrate excellent durability and stability without deactivation following over 50h of operation.The selectivity for formate production is also studied by density functional theory(DFT)calculations,validating the importance and efficacy of the stabilization of intermediates(^(*)OCHO)on the P-BiNS surfaces.This study provides a facile plasma-assisted approach for developing high-performance and low-cost electrocatalysts. 展开更多
关键词 Plasma-assisted synthesis Plasmaa ctivation Bismuth nanosheet CO_(2)RR formate
下载PDF
A Revisit to the Role of Bridge-adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid at Pt Electrodes 被引量:1
7
作者 徐杰 梅东 +3 位作者 袁道福 张尊彪 刘少雄 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第3期321-328,I0004,共9页
The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. In... The mechanism and kinetics of electrocatalytic oxidation of formic acid at Pt electrodes is discussed in detail based on previous electrochemical in-situ ATR-FTIRS data [Langmuir 22, 10399 (2006)and Angewa. Chem. Int. Ed. 50, 1159 (2011)]. A kinetic model with formic acid adsorption (and probably the simultaneous C-H bond activation) as the rate determining step, which contributes to the majority of reaction current for formic acid oxi- dation, was proposed for the direct pathway. The model simulates well the IR spectroscopic results obtained under conditions where the poisoning effect of carbon monoxide (CO) is negligible and formic acid concentration is below 0.1 mol/L. The kinetic simulation predicts that in the direct pathway formic acid oxidation probably only needs one Pt atom as active site, formate is the site blocking species instead of being the active intermediate. We review in detail the conclusion that formate pathway (with either 1st or 2nd order reaction kinetics) is the direct pathway, possible origins for the discrepancies are pointed out. 展开更多
关键词 Formic acid oxidation Mechanism ELECTROCATALYSIS formate pathway Directpathway
下载PDF
Determination of Isotherm for Acetate and Formate Adsorption at Pt(111) Electrode by Fast Scan Voltammetry
8
作者 徐杰 林楚红 +3 位作者 梅东 张尊彪 袁道福 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期191-197,I0004,共8页
Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorp... Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp- tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorption desorption processes at electrode surface can be obtained using just one solution with relatively low reactant concentration, by taking the advantage of varying the potential scan rate (relative of the diffusion rate) to tune the adsorption rate and proper mathematic treatment. The methodology is demonstrated by taking acetate adsorption at Pt(lll) in acidic solution as an example. The possibility for extension of this method toward mechanistic studies of complicated electrocatalytic reactions is also given. 展开更多
关键词 ADSORPTION Desorption Pt(lll) Acetate anion formate anion
下载PDF
Role of Bridge-bonded Formate in Formic Acid Dehydration to CO at Pt Electrode: Electrochemial in-situ Infrared Spectroscopic Study 被引量:1
9
作者 张尊彪 徐杰 +1 位作者 康婧 陈艳霞 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第4期471-476,J0002,共7页
Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded forma... Formic acid (HCOOH) decomposition at Pt film electrode has been studied by electrochem- ical in situ FTIR spectroscopy under attenuated-total-reflection configuration, in order to clarify whether bridge-bonded formate (HCOOD) is the reactive intermediate for COad for-mation from HCOOH molecules. When switching from HCOOH-free solution to HCOOH- containing solution at constant potential (E=0.4 V vs. RHE), we found that immediately upon solution switch COad formation rate is the highest, while surface coverage of formate is zero, then after COad formation rate decreases, while formate coverage reaches a steady state coverage quickly within ca. 1 s. Potential step experiment from E=0.75 V to 0.35 V, reveals that formate band intensity drops immediately right after the potential step, while the COad signal develops slowly with time. Both facts indicate that formate is not the reactive intermediate for formic acid dehydration to CO. 展开更多
关键词 Mechanism for formic acid dehydration formate intermediate CO pathway Pt electrode Infrared spectroscopic studies under attenuated total reflection configuration
下载PDF
Challenges and opportunities for using formate to store, transport, and use hydrogen 被引量:5
10
作者 Katarzyna Grubel Hyangsoo Jeong +1 位作者 Chang Won Yoon Tom Autrey 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期216-224,共9页
In this perspective article,the synthesis and thermodynamic properties of aqueous solutions of formate salts(FS,HCO2-)are described in relationship to the concept of H2carriers.The physiochemical properties of solid F... In this perspective article,the synthesis and thermodynamic properties of aqueous solutions of formate salts(FS,HCO2-)are described in relationship to the concept of H2carriers.The physiochemical properties of solid FS,aqueous formate solutions,and aqueous bicarbonate solutions set the limitations for storage capacity,deliverable capacity,and usable H2capacity of these H2carriers,respectively.These parameters will help in the design of systems that use H2carriers for storage and transport of H2for fuel cell power applications.FS,as well as admixtures with formic acid(FA,H2CO2),have potential to address the goals outlined in the U.S.Department of Energy’s H2@scale initiative to store in chemical bonds a significant quantity of energy(hundreds of megawatts)obtained from large scale renewable resources. 展开更多
关键词 HYDROGEN carriers formate SALTS BICARBONATE SALTS THERMODYNAMICS
下载PDF
Nitrogen doped tin oxide nanostructured catalysts for selective electrochemical reduction of carbon dioxide to formate 被引量:4
11
作者 Qiankun Li Zhuo Wang +2 位作者 Miao Zhang Pengfei Hou Peng Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期825-829,共5页
Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The... Tin/tin oxide materials are key electrocatalysts for selective conversion of CO;to formate/formic acid.Herein we report a tin oxide material with nitrogen doping by using ammonia treatment at elevated temperature. The N doped material demonstrated enhanced electrocatalytic CO;reduction activity, showing high Faradaic efficiency(90%) for formate at -0.65 V vs. RHE with partial current density of 4 mA/cm;.The catalysis was contributed to increased electron negativity of N atom compared to O atom. Additionally, the N-doped catalyst demonstrates sulfur tolerance with retained formate selectivity. The analysis after electrolysis shows that the catalyst structure partially converts to metallic Sn, and thus the combined Sn/N-SnO;is the key for the active CO;catalysis. 展开更多
关键词 CO2 reduction ELECTROCATALYSIS formate Tin oxide Nitrogen doping
下载PDF
Novel Synthetic Method for the Vilsmeier-Haack Reagent and Green Routes to Acid Chlorides, Alkyl Formates, and Alkyl Chlorides 被引量:12
12
作者 Yoshikazu Kimura Daisuke Matsuura 《International Journal of Organic Chemistry》 2013年第3期1-7,共7页
An environmentally benign and practical preparation method for the Vilsmeier-Haack reagent (VH) has been developed by using phthaloyl dichloride with DMF in toluene or 2-chlorotoluene. Phthalic anhydride as the byprod... An environmentally benign and practical preparation method for the Vilsmeier-Haack reagent (VH) has been developed by using phthaloyl dichloride with DMF in toluene or 2-chlorotoluene. Phthalic anhydride as the byproduct was recovered in high yield by simple filtration. Some aromatic acids have been transformed into the corresponding acid chlorides in good yields by employing the isolated VH. Treatment of primary or secondary alcohols with VH gave alkyl formates or alkyl chlorides by depending on the reaction conditions. 展开更多
关键词 Phthaloyl DICHLORIDE Vilsmeier-Haack REAGENT ACID Chlorides ALKYL formateS ALKYL Chlorides
下载PDF
Promoting effect of chloride ions on selective oxidation of methanol to methyl formate over zirconia-supported ruthenium oxide catalysts 被引量:2
13
作者 Weizhen Li Hongpeng Zhang +1 位作者 Xiaohui He Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期512-516,共5页
The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low tem... The effect of chloride ions on a monoclinic ZrO2-supported RuOx (RuOx/m-ZrO2) catalyst with a Ru surface density of 0.3 Ru/nm2 was studied in the selective oxidation of methanol to methyl formate (MF) at a low temperature of 373 K. The m-ZrO2 support was Cl-free, and Cl- ions were introduced into the RuOx/m-ZrO2 catalyst by impregnation with zirconium oxychloride or ammonium chloride and subsequent thermal treatment in air at 673 K. The structures of these catalysts were characterized by X-ray diffraction, Raman and X-ray photoelectron spectroscopies. Their reducibility was probed by temperature-programmed reduction in H2. The RuOx domains were present as highly dispersed Rut42- structure on m-ZrO2 with similar reducibility for the RuOx/m-ZrO2 samples irrespective of modification with or without Cl ions. Introduction of appropriate amounts of zirconium oxychloride into RuOx/m-ZrO2 led to a remarkable increase in the methanol oxidation rate and MF selectivity, whereas introduction of ammonium chloride or zirconyl nitrate significantly inhibited the catalytic performance of RuOx/m-ZrO2. The promoting effect of Cl- ions derived from zirconium oxychloride can be tentatively attributed to their roles in facilitating the adsorption of methanol and desorption of MF product or its intermediates. This finding provides novel insights into the promoting effect of Cl- ions on oxides-based catalysts for selective oxidation reactions. 展开更多
关键词 methanol oxidation ruthenium oxide monoclinic zirconia chloride promoting effect methyl formate
下载PDF
New methyl formate synthesis method:Coal to methyl formate 被引量:3
14
作者 Lingyun Rong Zhongning Xu +1 位作者 Jing Sun Guocong Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期238-242,共5页
Methyl formate is one of the most important intermediates in C1 chemistry, which has been employed in a wide range of industrial applications. Current synthesis methods for methyl formate mainly include esterification... Methyl formate is one of the most important intermediates in C1 chemistry, which has been employed in a wide range of industrial applications. Current synthesis methods for methyl formate mainly include esterification of methanol and formic acid, liquid-phase methanol carbonylation, oxidative dehydrogenation of methanol, one-step syngas synthesis, and carbon dioxide hydrogenation and condensation with methanol, Liquid-phase methanol carbonylation is currently a main commercially viable process devel- oped by BASF Corp, for the industrial production of methyl formate. Recently, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences has developed a new synthesis method to con- vert coal to methyl formate (denoted as CTMF), Different from the liquid-phase methanol carbonylation using homogeneous catalysts, CTMF method features with vapor-phase methanol carbonylation using het- erogeneous nanocatalysts, which can effectively utilize the coal-based syngas and produce value-added fine chemicals (i.e., methyl formate). The newly developed method not only provides a new methyl for- mate synthesis technology but also contributes to the development of strategies for synthesizing valuable chemicals from coal. In this review, we firstly provide introduction on the development of existing methyl formate synthesis methods and then highlight the research progress of CTMF method. Finally, a perspec- tive on the future of CTMF is given, 展开更多
关键词 Methyl formate Coal to methyl formate Vapor-phase methanol carbonylation Nanocatalyst
下载PDF
Photopromoted methoxycarbonylation of olefin with methyl formate by Co(OAc)2 被引量:1
15
作者 Ying Na Cui Jing Mei Yin Da Bin Gao Ying Ping Jia Guang Yun Zhou Shen Min Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第1期17-20,共4页
The photopromoted methoxycarbonylation of olefin with methyl formate catalyzed by Co(OAc)2 at ambient conditions has been carried out. The results indicated that the reaction activity increased with the increasing t... The photopromoted methoxycarbonylation of olefin with methyl formate catalyzed by Co(OAc)2 at ambient conditions has been carried out. The results indicated that the reaction activity increased with the increasing temperature. Methyl formate decomposed into CO and CH3OH firstly under irradiation, and then the methoxycarbonylation of olefin proceeded under catalysis of Co(OAc)2. The mechanism of methyl formate participating in the methoxycarbonylation is verified by the IR analysis and the labeling experiments of CDHOD and CH3^18OH. 展开更多
关键词 Mcthoxycarbonylation Methyl formate OLEFIN Photopromoted Cobalt acetate
下载PDF
Kinetics Modeling of Calcium Formate Synthesis by Calcium Hydroxide Carbonylation 被引量:1
16
作者 Zhenhua Li Chunfang Xie +2 位作者 Weihan Wang Jing Lv Xinbin Ma 《Transactions of Tianjin University》 EI CAS 2018年第2期144-151,共8页
The synthesis of calcium formate by Ca(OH)_2 carbonylation was studied in a semi-batch stirred tank.The reaction mechanism was analyzed theoretically and the rate of each step was compared.The influence ofreaction con... The synthesis of calcium formate by Ca(OH)_2 carbonylation was studied in a semi-batch stirred tank.The reaction mechanism was analyzed theoretically and the rate of each step was compared.The influence ofreaction conditions on the formation of calcium formate was investigated.The results indicate that the rate-controlling step is the reaction between dissolved CO and dissolved Ca(OH)_2,and the gaseous diffusion resistance can be eliminated when the stirring speed reached 1000 r/min.Furthermore,the reaction kinetics was studied at a stirring speed of 1000 r/min,temperature of 423–453 K,pressure of 2.0–3.5 MPa and different initial concentrations of Ca(OH)_2.An effective method was proposed to measure the reaction rate of CO.A mathematical model was developed using the dual-film theory,and the parameters were obtained using regression of experimental data.The reaction rates calculated using the kinetics model were compared with experimental data.The results show that the deviations are within ±10%,proving that the established model is valid and can provide a basis for industrial amplification. 展开更多
关键词 CALCIUM HYDROXIDE CARBONYLATION CALCIUM formate KINETICS
下载PDF
Catalytic Systems Containing p-Toluenesulfonic Acid for the Coupling Reaction of Formaldehyde and Methyl Formate 被引量:1
17
作者 Kebing Wang Jie Yao +1 位作者 Yue Wang Gongying Wang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第3期286-292,共7页
The coupling reaction of formaldehyde (FA) and methyl formate (MF) to form methyl glycolate (MG) and methyl methoxy acetate (MMAc), catalyzed by p-toluenesulfonic acid (p-TsOH) as well as assisted by differe... The coupling reaction of formaldehyde (FA) and methyl formate (MF) to form methyl glycolate (MG) and methyl methoxy acetate (MMAc), catalyzed by p-toluenesulfonic acid (p-TsOH) as well as assisted by different kinds of solvents or Ni-containing compounds, had been investigated. The results showed that when the reaction was carried out at 140 ℃, with a molar ratio of FA to MF of 0.65 : 1, molar fraction of p-TsOH to total feedstock of 11.0%, and reaction time of 3 h, the yield of MG and MMAc was 31.1% and 17.1%, respectively, p-TsOH catalyzed the coupling reaction by means of the synergistic catalysis of protonic acidity and soft basicity. Adding extra solvents to the reaction system was unfavorable for the reaction. The composite catalytic system consisting of p-TsOH and NiX2 (X=Cl, Br, I) exhibited a high catalytic performance for the coupling reaction, and NiX2 acted as a promoter in the reaction, whose promotion for the catalysis increased in the following order: NiCl2〈NiBr2〈NiI2. The present system is less corrosive when compared with the previous system, in which strong inorganic liquid acids were used as catalysts. 展开更多
关键词 FORMALDEHYDE methyl formate methyl glycolate methyl methoxy acetate p-toluenesulfonicacid
下载PDF
The study of formulation and performance of formate drilling and completion fluid system 被引量:2
18
作者 Bingren Wang Zehua Wang +1 位作者 Yuxue Sun Jiuzhou Sun 《Natural Science》 2013年第9期997-1000,共4页
Formate drilling and completion fluid system is a new type of clean organic salt brine system which has been developed from inorganic salt brine drilling fluid system. It is beneficial to protecte and find hydrocarbon... Formate drilling and completion fluid system is a new type of clean organic salt brine system which has been developed from inorganic salt brine drilling fluid system. It is beneficial to protecte and find hydrocarbon reservoir. Due to the solid free system, the damage of solid phase particles on reservoir, especially low permeability oil and gas layer, can be greatly eliminated, at the same time, drilling fluid and completion fluid have greater compatibility. It will avoid that precipitation which is not compatible with drilling and completion fluid and generates damages on reservoir. And because mud cake of the solid free system is thin and resilient, it is conductive to improve cementing quality greatly. Experiments show that the formate drilling and completion system has good rheological property, strong inhibition ability, good lubricating performance, good compatibility with reservoir rocks and formation water at high temperature. 展开更多
关键词 formate DRILLING and COMPLETION Fluid SYSTEM Solid Free SYSTEM HYDROCARBON RESERVOIR Protection
下载PDF
Condensation reaction of formaldehyde and methyl formate catalyzed by a composite catalyst system 被引量:1
19
作者 Ke Bing Wang Gong Ying Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2007年第7期811-813,共3页
The condensation reaction of formaldehyde and methyl formate to form methyl glycolate and methyl methoxy acetate catalyzed by p-toluenesulfonic acid and different Lewis acid compounds has been investigated. The compos... The condensation reaction of formaldehyde and methyl formate to form methyl glycolate and methyl methoxy acetate catalyzed by p-toluenesulfonic acid and different Lewis acid compounds has been investigated. The composite catalytic system consisting of p-toluenesulfonic acid and NiX2 (X = Cl, Br, I), especially NiI2, exhibited a high catalytic performance for the condensation reaction, the total yield of MG and MMAc was up to 72.37%. 展开更多
关键词 p-Toluenesulfonic acid FORMALDEHYDE Methyl formate Methyl glycolate Methyl methoxy acetate
下载PDF
Ni nanoparticles confined by yolk-shell structure of CNT-mesoporous carbon for electrocatalytic conversion of CO_(2): Switching CO to formate 被引量:4
20
作者 Juan Du Aibing Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期224-229,I0006,共7页
Electrochemical reduction of CO_(2)(CO_(2)ER) to formate has been a promising route to produce value-added chemicals.Developing low-cost and efficient electrocatalysts with high product selectivity is still a grand ch... Electrochemical reduction of CO_(2)(CO_(2)ER) to formate has been a promising route to produce value-added chemicals.Developing low-cost and efficient electrocatalysts with high product selectivity is still a grand challenge.Herein,a novel Ni nanoparticles-anchored CNT coated by mesoporous carbon with yolk-shell structure (CNT/Ni@mC) catalysis was designed for CO_(2)ER.Ni nanoparticles were confined in the cavity between CNT and mesoporous carbon shell and the confined space can be controlled by tuning the amount of silica precursor.The mesoporous carbon shell and confined space are beneficial to charge transmission during CO_(2)ER.In contrast to previous studies,the CNT/Ni@mC catalyst presents selectivity toward formate rather than CO.Electrochemical in situ attenuated total reflection Fourier transform infrared spectroscopy measurements indicate the presence of a COO* intermediate that converts to formate under CO_(2)ER conditions.The well-defined structural feature of the confined space of the Ni-based catalyst for selective CO_(2)ER to formate may facilitate in-depth mechanistic understandings on structural factors that affect CO_(2)ER performance. 展开更多
关键词 Carbon dioxide electrochemical reduction Nickel-based catalyst formate Yolk-shell CNT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部