The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o...The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.展开更多
Grinding residual stresses of silicon wafers affect the performance of IC circuits. Based on the wafer rotation ultra-precision grinding ma-chine, the residual stress distribution along grinding marks and ground surfa...Grinding residual stresses of silicon wafers affect the performance of IC circuits. Based on the wafer rotation ultra-precision grinding ma-chine, the residual stress distribution along grinding marks and ground surface layer depth of the ground wafers are investigated using Raman microspectroscopy. The results show that the ground wafer surfaces mainly present compressive stress. The vicinity of pile-ups between two grinding marks presents higher a compressive stress. The stress value of the rough ground wafer is the least because the material is removed by the brittle fracture mode. The stress of the semi-fine ground wafer is the largest because the wafer surface presents stronger phase trans-formations and elastic-plastic deformation. The stress of the fine ground wafer is between the above two. The strained layer depths for the rough, semi-fine, and fine ground wafers are about 7.6 m, 2.6 m, and 1.1 m, respectively. The main reasons for generation of residual stresses are phase transformations and elastic-plastic deformation.展开更多
The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all...The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all-steel ball bearings. In this paper, the influence of thermal stress produced in sintering and mechanical stress formed in lapping process on residual stress in surface of silicon nitride ceramic balls was discussed. The residual compress stress will be formed in the surface of silicon nitride ceramic balls after sintering. The residual tensile stress will be formed in surface of silicon nitride ceramic balls in lapping process, and the size of abrasive particle is smaller, such trend is stronger. In this paper the residual stress was measured by the xylometric measurement in which the material in surface was peeled with lapping. The distribution of residual stress in surface can be calculated with the variation in specific volume. The technological parameter with which the material was peeled by lapping was given, for minimizing the extra influence of the residual stress forming in peeling on the original residual stress in surface, the abrasive particle size would not be too small and the load impressed would not be too large. Some experimental researches on residual stress in surface of silicon nitride ceramic balls were made. The surface of silicon nitride ceramic balls presented residual compressive stress after sintering and the influence of the ball size on the residual stress is feeble. It is expected that the size of ball blank is same for achieving the same residual compressive stress in surface on balls after final machining. In lapping process, the surface of silicon nitride ceramic balls presented residual tensile stress, the larger the load which is impressed on single ball, the larger the amplitude of residual tensile stress is; the smaller the abrasive particle, the stronger the trend of plastic deformation is and the larger the amplitude of residual tensile stress is.展开更多
Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e...Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.展开更多
The QTL qHUS6 for hull silicon content in rice was previously located on the short arm of rice chromosome 6. By using an F2:3 population segregating in the RM587-RM19784 region harboring qHUS6 in an isogenic backgrou...The QTL qHUS6 for hull silicon content in rice was previously located on the short arm of rice chromosome 6. By using an F2:3 population segregating in the RM587-RM19784 region harboring qHUS6 in an isogenic background, two QTLs for hull silicon content were detected, of which qHUS6-1 was located in the distal region and qHUS6.2 in the region proximal to the centromere. Three rice plants carrying small heterozygous segments in the target region were selected, of which two covered the qHUS6-1 region and the other covered the qHUS6-2 region. Three F2:3 populations were derived from the selfed seeds of the three plants, respectively. QTL mapping was performed using the two populations segregating in the qHUS6-1 region, and qHUS6-1 was delimited to a 147.0-kb region flanked by the markers RM510 and RM19417. Five groups of F3 lines with different genotypic compositions in the qHUS6-2 region were selected from the other F2-3 population. Two QTLs were separated with two-way ANOVA, of which qHUS6-2a was located in the interval defined by RM19706-RM19795 and qHUS6-2b in the interval RM314-RM19665.展开更多
It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This...It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This study analyzed the fomation mechanism of 'toil-burn" defects and the strategies to prevent them,and proposed, according to the equipment and process status in the production fields ,some relevant optimized control measures and process adjustment schemes from two perspectives of reducing the residual emulsion trod avoiding the specific temperature range. The results demonstrate that the application of the proposed optimization meastu'es effectively inhibits the formation of "oil-bum" defects.展开更多
为了有效监测环境水体中的有机氯农药(OCPs)残留,本研究开发了一种低消耗、弱基质效应、经济便捷的固相微萃取技术测定水中13种OCPs残留的方法。应用具有强选择性的硅橡胶(SR)薄膜为固相吸附材料,制备了简便易操作的固相萃取瓶,通过优...为了有效监测环境水体中的有机氯农药(OCPs)残留,本研究开发了一种低消耗、弱基质效应、经济便捷的固相微萃取技术测定水中13种OCPs残留的方法。应用具有强选择性的硅橡胶(SR)薄膜为固相吸附材料,制备了简便易操作的固相萃取瓶,通过优化萃取方式、萃取时间、洗脱溶剂以及洗脱方式等条件,选择涡旋10 min进行SR薄膜对目标物的萃取,利用5 mL V_(正己烷):V_(乙酸乙酯)=1:1溶液洗脱SR薄膜上目标物,采用气相色谱仪进行检测。结果表明:方法检出限在0.001~0.132μg/L之间,定量限为0.2μg/L;决定系数(R^(2))>0.9973;在0.2、1、20μg/L 3个添加水平下,13种农药在水中OCPs的平均回收率在73%~109%之间,相对标准偏差在0.5%~13%之间(n=5)。利用该方法对巢湖、南淝河等合肥市内主要河流进行了13种OCPs残留的检测,结果发现13种OCPs的最高检出质量浓度为3.64μg/L。与已所报道的方法相比,该方法具有灵敏度高、操作简便、成本低等特点,在环境水体OCPs多残留痕量监测领域具有良好的应用前景。展开更多
基金Project (51005154) supported by the National Natural Science Foundation of ChinaProject (12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission, ChinaProject (201104271) supported by the China Postdoctoral Science Foundation
文摘The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa.
基金support of the Joint Fund of NSFC with Guangdong (No.U0734008)the National Natural Science Foundation of China (No.51075125)the Research Project Program of Natural Science of the Education Department of Henan Province (No.2011A460012)
文摘Grinding residual stresses of silicon wafers affect the performance of IC circuits. Based on the wafer rotation ultra-precision grinding ma-chine, the residual stress distribution along grinding marks and ground surface layer depth of the ground wafers are investigated using Raman microspectroscopy. The results show that the ground wafer surfaces mainly present compressive stress. The vicinity of pile-ups between two grinding marks presents higher a compressive stress. The stress value of the rough ground wafer is the least because the material is removed by the brittle fracture mode. The stress of the semi-fine ground wafer is the largest because the wafer surface presents stronger phase trans-formations and elastic-plastic deformation. The stress of the fine ground wafer is between the above two. The strained layer depths for the rough, semi-fine, and fine ground wafers are about 7.6 m, 2.6 m, and 1.1 m, respectively. The main reasons for generation of residual stresses are phase transformations and elastic-plastic deformation.
文摘The influence of the residual stress in surface of ceramic balls on the fatigue life is large, because the life of silicon nitride ball bearings is more sensitive to the load acted on the bearings than the life of all-steel ball bearings. In this paper, the influence of thermal stress produced in sintering and mechanical stress formed in lapping process on residual stress in surface of silicon nitride ceramic balls was discussed. The residual compress stress will be formed in the surface of silicon nitride ceramic balls after sintering. The residual tensile stress will be formed in surface of silicon nitride ceramic balls in lapping process, and the size of abrasive particle is smaller, such trend is stronger. In this paper the residual stress was measured by the xylometric measurement in which the material in surface was peeled with lapping. The distribution of residual stress in surface can be calculated with the variation in specific volume. The technological parameter with which the material was peeled by lapping was given, for minimizing the extra influence of the residual stress forming in peeling on the original residual stress in surface, the abrasive particle size would not be too small and the load impressed would not be too large. Some experimental researches on residual stress in surface of silicon nitride ceramic balls were made. The surface of silicon nitride ceramic balls presented residual compressive stress after sintering and the influence of the ball size on the residual stress is feeble. It is expected that the size of ball blank is same for achieving the same residual compressive stress in surface on balls after final machining. In lapping process, the surface of silicon nitride ceramic balls presented residual tensile stress, the larger the load which is impressed on single ball, the larger the amplitude of residual tensile stress is; the smaller the abrasive particle, the stronger the trend of plastic deformation is and the larger the amplitude of residual tensile stress is.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundation of China (Grants 11422219, 11227202, 11372217, 11272232)+1 种基金the Program for New Century Excellent Talents in University (Grant NCET-13)China Scholarship Council (201308120092)
文摘Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
基金supported by the National Natural Science Foundation of China(GrantNo.30571062)National Hi-Tech Research and Development Program of China(Grant No.2006AA10Z1E8)the Program of Super Rice from Chinese Agricultural Ministry(Grant No.200906)
文摘The QTL qHUS6 for hull silicon content in rice was previously located on the short arm of rice chromosome 6. By using an F2:3 population segregating in the RM587-RM19784 region harboring qHUS6 in an isogenic background, two QTLs for hull silicon content were detected, of which qHUS6-1 was located in the distal region and qHUS6.2 in the region proximal to the centromere. Three rice plants carrying small heterozygous segments in the target region were selected, of which two covered the qHUS6-1 region and the other covered the qHUS6-2 region. Three F2:3 populations were derived from the selfed seeds of the three plants, respectively. QTL mapping was performed using the two populations segregating in the qHUS6-1 region, and qHUS6-1 was delimited to a 147.0-kb region flanked by the markers RM510 and RM19417. Five groups of F3 lines with different genotypic compositions in the qHUS6-2 region were selected from the other F2-3 population. Two QTLs were separated with two-way ANOVA, of which qHUS6-2a was located in the interval defined by RM19706-RM19795 and qHUS6-2b in the interval RM314-RM19665.
文摘It has been found through analysis of defect components and micrographs that "oil-burn" defects on non- oriented silicon steel surf'aces, which of ten occur after cold rolling, are composed of Fe, O, Si and C. This study analyzed the fomation mechanism of 'toil-burn" defects and the strategies to prevent them,and proposed, according to the equipment and process status in the production fields ,some relevant optimized control measures and process adjustment schemes from two perspectives of reducing the residual emulsion trod avoiding the specific temperature range. The results demonstrate that the application of the proposed optimization meastu'es effectively inhibits the formation of "oil-bum" defects.
文摘为了有效监测环境水体中的有机氯农药(OCPs)残留,本研究开发了一种低消耗、弱基质效应、经济便捷的固相微萃取技术测定水中13种OCPs残留的方法。应用具有强选择性的硅橡胶(SR)薄膜为固相吸附材料,制备了简便易操作的固相萃取瓶,通过优化萃取方式、萃取时间、洗脱溶剂以及洗脱方式等条件,选择涡旋10 min进行SR薄膜对目标物的萃取,利用5 mL V_(正己烷):V_(乙酸乙酯)=1:1溶液洗脱SR薄膜上目标物,采用气相色谱仪进行检测。结果表明:方法检出限在0.001~0.132μg/L之间,定量限为0.2μg/L;决定系数(R^(2))>0.9973;在0.2、1、20μg/L 3个添加水平下,13种农药在水中OCPs的平均回收率在73%~109%之间,相对标准偏差在0.5%~13%之间(n=5)。利用该方法对巢湖、南淝河等合肥市内主要河流进行了13种OCPs残留的检测,结果发现13种OCPs的最高检出质量浓度为3.64μg/L。与已所报道的方法相比,该方法具有灵敏度高、操作简便、成本低等特点,在环境水体OCPs多残留痕量监测领域具有良好的应用前景。