期刊文献+
共找到26,410篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of OECD/NEA medium 1000 MWth sodium-cooled fast reactor using the Monte Carlo serpent code and ENDF/B-VIII.0 nuclear data library
1
作者 Fatima IAl-Hamadi Bassam AKhuwaileh +1 位作者 Peng Hong Liem Donny Hartanto 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2020年第12期77-87,共11页
This study presents a benchmark evaluation of the new ENDF/B-VIII.0 nuclear data library for the Organization for Economic Co-operation and Development/Nuclear Energy Agency Medium 1000 MWth sodium-cooled fast reactor... This study presents a benchmark evaluation of the new ENDF/B-VIII.0 nuclear data library for the Organization for Economic Co-operation and Development/Nuclear Energy Agency Medium 1000 MWth sodium-cooled fast reactor(SFR).The study presented herein covers both SFR core types,i.e.,metallic fueled(MET-1000)and oxide fueled(MOX-1000),simulated using the continuous-energy Monte Carlo Serpent2 code.The neutronics performances of the ENDF/B-VIII.0-based simulations were compared mainly to two libraries:ENDF/B-VII.1 and JENDL-4.0.The comparison includes several neutronics parameters evaluated for the beginning and end of the cycle conditions.These parameters include the effective multiplication factor keff,total effective delayed neutron fraction beff,sodium void reactivity(DqNa),Doppler constant(DqDoppler),and control rod worth(DqCR).In addition,a sensitivity study was used to reveal the major isotope/reaction pairs contributing to the discrepancy observed in the performance of the three libraries using 33 and 44-energy-group structures. 展开更多
关键词 Serpent ENDF/B-VIII.0 sodium-cooled fast reactor Sensitivity analysis
下载PDF
Materials R & D for sodium-cooled fast reactor in China
2
作者 XIE Chuchunn 《Baosteel Technical Research》 CAS 2010年第S1期73-,共1页
The study gives a brief introduction on development of innovated nuclear system in China,mainly focus on the materials R&D status for the sodium cooled fast reactor.With the high speed development of economy,China... The study gives a brief introduction on development of innovated nuclear system in China,mainly focus on the materials R&D status for the sodium cooled fast reactor.With the high speed development of economy,China needs a huge energy supply;at same time a more cleaning energy to reduce the carbon release is demanded.The nuclear energy is the most cleaning energy at present time,especially the innovated nuclear system which is so-called GenerationⅣpower plants has got its prior development due to its safety, economical and little fission production produced.Fast breeder reactor,as the priority development reactor type in the Gen-Ⅳnuclear system,is the key to the advanced closed fuel cycle technologies.China experimental fast reactor(CEFR ) has been completed the design,construction the synthesis system commissioning and reached its physical criticality on July 21,2010.At China Institute of Atomic Energy,the CEFR and other research facilities have been established,and extensive studies are planning to carry out in the areas of fuel and materials development.This will laid the foundation for the design and development of the future's CFR—900(China Demonstration Fast Reactor) and CCFR(China Commercial Fast Reactor). Highlights of some of materials R&D studies are discussed in this paper. 展开更多
关键词 CEFR sodium-cooled fast reactor sodium compatibility irradiation property mechanical property
下载PDF
Reactor field reconstruction from sparse and movable sensors using Voronoi tessellation-assisted convolutional neural networks
3
作者 He-Lin Gong Han Li +1 位作者 Dunhui Xiao Sibo Cheng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期173-185,共13页
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C... The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively. 展开更多
关键词 Voronoi tessellation Field reconstruction Nuclear reactors reactor physics On-line monitoring
下载PDF
Proposal of a Deuterium-Deuterium Fusion Reactor Intended for a Large Power Plant
4
作者 Patrick Lindecker 《World Journal of Nuclear Science and Technology》 CAS 2024年第1期1-58,共58页
This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is consid... This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any. 展开更多
关键词 Fusion reactor Deuterium-Deuterium reactor Catalyzed D-D Colliding Beams Stellarator reactor Power Plant
下载PDF
Application of the CatBoost Model for Stirred Reactor State Monitoring Based on Vibration Signals
5
作者 Xukai Ren Huanwei Yu +3 位作者 Xianfeng Chen Yantong Tang Guobiao Wang Xiyong Du 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期647-663,共17页
Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in th... Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault. 展开更多
关键词 Stirred reactor fault diagnosis vibration signal CatBoost
下载PDF
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system
6
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Review on synergistic damage effect of irradiation and corrosion on reactor structural alloys
7
作者 Hui Liu Guan-Hong Lei He-Fei Huang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期109-141,共33页
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou... The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors. 展开更多
关键词 Irradiation and corrosion Synergistic effect Austenitic stainless steels Nickel-based alloys reactors
下载PDF
Induction System for a Fusion Reactor: Quantum Mechanics Chained up
8
作者 Friedrich Björn Grimm 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期158-166,共9页
In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magn... In the quest for a sustainable and abundant energy source, nuclear fusion technology stands as a beacon of hope. This study introduces a groundbreaking quantum mechanically effective induction system designed for magnetic plasma confinement within fusion reactors. The pursuit of clean energy, essential to combat climate change, hinges on the ability to harness nuclear fusion efficiently. Traditional approaches have faced challenges in plasma stability and energy efficiency. The novel induction system presented here not only addresses these issues but also transforms fusion reactors into integrated construction systems. This innovation promises compact fusion reactors, marking a significant step toward a clean and limitless energy future, free from the constraints of traditional power sources. This revolutionary quantum induction system redefines plasma confinement in fusion reactors, unlocking clean, compact, and efficient energy production. 展开更多
关键词 Fusion reactor Plasma Confinement Quantum Mechanics Clean Energy
下载PDF
Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident
9
作者 Mengdong An Weiyuan Zhong +1 位作者 Wei Xu Xiuli Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1331-1349,共19页
The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbin... The reactor coolant pump(RCP)rotor seizure accident is defined as a short-time seizure of the RCP rotor.This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip.The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences.This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation,which need to be analyzed and understood.This study constructed transient flow and rotational speed mathematical models under various degrees of rotor seizure using the test data collected from a dedicated transient rotor seizure test system.Then,bidirectional fluid-solid coupling simulations were conducted to investigate the flow evolution mechanism.It is found that the influence of the impeller structure size and transient braking acceleration on the unsteady head(Hu)is dominant in rotor seizure accident events.Moreover,the present results also show that the rotational acceleration additional head(Hu1)is much higher than the instantaneous head(Hu2). 展开更多
关键词 reactor coolant pump bidirectional fluid-solid coupling rotor seizure nuclear accident
下载PDF
High-resolution neutronics model for ^(238)Pu production in high-flux reactors
10
作者 Qing-Quan Pan Qing-Fei Zhao +4 位作者 Lian-Jie Wang Bang-Yang Xia Yun Cai Jin-Biao Xiong Xiao-Jing Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期226-236,共11页
We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and singl... We proposed and compared three methods(filter burnup,single energy burnup,and burnup extremum analysis)to build a high-resolution neutronics model for 238Pu production in high-flux reactors.The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to~1 eV,thereby constructing the importance curve and yield curve of the full energy range.The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency,thereby constructing extreme curves.The three curves,which quantify the transmutation rate of the nuclei in each energy region,are of physical significance because they have similar distributions.A high-resolution neutronics model for ^(238)Pu production was established based on these three curves,and its universality and feasibility were proven.The neutronics model can guide the neutron spectrum optimization and improve the yield of ^(238)Pu by up to 18.81%.The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution,thus providing theoretical support for high-flux reactor design and irradiation production of ^(238)Pu. 展开更多
关键词 ^(238)Pu Neutronics model High-flux reactor Spectrum resolution Spectrum optimization
下载PDF
Preliminary safety analysis for heavy water-moderated molten salt reactor
11
作者 Gao-Ang Wen Jian-Hui Wu +3 位作者 Chun-Yan Zou Xiang-Zhou Cai Jin-Gen Chen Man Bao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期202-217,共16页
The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.... The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents. 展开更多
关键词 Heavy water-moderated molten salt reactor Neutronics and thermal-hydraulics coupling Transient analysis Accident analysis
下载PDF
Review of safety improvement on sodium-cooled fast reactors after Fukushima accident
12
作者 Toshikazu Takeda Yoichiro Shimazu +1 位作者 Basma Foad Katsuhisa Yamaguchi 《Natural Science》 2012年第11期929-935,共7页
Several countries are developing and deploying SFRs even after the accident at Tokyo Electric Power Company’s Fukushima Dai-Ichi Nuclear Power Station. However, the Fukushima accident prompted all countries to redefi... Several countries are developing and deploying SFRs even after the accident at Tokyo Electric Power Company’s Fukushima Dai-Ichi Nuclear Power Station. However, the Fukushima accident prompted all countries to redefine the fast reactor programs. The drastic safety enhancement is the most important issue to be established. In light of this situation, key essence of the safety improvement is reviewed in this paper by referring the achievements of the recent International Workshop on Prevention and Mitigation of Severe Accidents in SFRs which was held by Japan Atomic Energy Agency (JAEA) in cooperation with the International Atomic Energy Agency (IAEA) in June, 2012 and the findings published in the past journals including those of the International Conference on Fast Reactor and Related Fuel Cycles (FR09) held by IAEA in December, 2009. 展开更多
关键词 SAFETY IMPROVEMENT FAST reactors FUKUSHIMA ACCIDENT
下载PDF
Control system design for a pressure-tube-type supercritical water-cooled nuclear reactor via a higher order sliding mode method
13
作者 M.Hajipour G.R.Ansarifar 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期145-154,共10页
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor... Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering. 展开更多
关键词 Supercritical water nuclear reactor Higher order sliding mode controller Steam temperature Steam pressure Point kinetics model
下载PDF
Development of an Evaluation Methodology for Fuel Discharge in Core Disruptive Accidents of Sodium-Cooled Fast Reactors
14
作者 Kenji Kamiyama Yoshiharu Tobita Tohru Suzuki Ken-ichi Matsuba 《Journal of Energy and Power Engineering》 2014年第5期785-793,共9页
关键词 钠冷快堆 破坏性 核事故 燃料 排放 评估 方法论 代码标识
下载PDF
Numerical Analysis of Self-wastage Phenomena Caused by Sodium-Water Reaction in Sodium-Cooled Fast Reactor throuah Simulant Experiment
15
作者 Sunghyon Jang Takashi Takata Akira Yamguchi 《Journal of Energy and Power Engineering》 2015年第6期539-547,共9页
关键词 钠水反应 模拟实验 钠冷快堆 浪费现象 数值分析 模仿 二次故障 微泄漏
下载PDF
Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer 被引量:2
16
作者 Qi Han Xin-Yuan Zhang +2 位作者 Hai-Bo Wu Xian-Tai Zhou Hong-Bing Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期84-92,共9页
The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly... The selective aerobic oxidation of benzyl alcohol to benzaldehyde has attracted considerable attention because benzaldehyde is a high value-added product. The rate of this typical gas–liquid reaction is significantly affected by mass transfer. In this study, CoTPP-mediated(CoTPP: cobalt(II) mesotetraphenylporphyrin) selective benzyl alcohol oxidation with oxygen was conducted in a membrane microchannel(MMC) reactor and a bubble column(BC) reactor, respectively. We observed that 83% benzyl alcohol was converted within 6.5 min in the MMC reactor, but only less than 10% benzyl alcohol was converted in the BC reactor. Hydrodynamic characteristics and gas–liquid mass transfer performances were compared for the MMC and BC reactors. The MMC reactor was assumed to be a plug flow reactor,and the dimensionless variance was 0.29. Compared to the BC reactor, the gas–liquid mass transfer was intensified significantly in MMC reactor. It could be ascribed to the high gas holdup(2.9 times higher than that of BC reactor), liquid film mass transfer coefficient(8.2 times higher than that of BC reactor), and mass transfer coefficient per unit interfacial area(3.8 times higher than that of BC reactor). Moreover,the Hatta number for the MMC reactor reached up to 0.61, which was about 15 times higher than that of the BC reactor. The computational fluid dynamics calculations for mass fractions in both liquid and gas phases were consistent with the experimental data. 展开更多
关键词 Membrane microchannel reactor Gas-liquid flow Mass transfer Benzyl alcohol Computational fluid dynamics(CFD) Bubble column reactor
下载PDF
Impacts of solid physical properties on the performances of a slurry external airlift loop reactor integrating mixing and separation 被引量:2
17
作者 Tian Zhang Qingshan Huang +3 位作者 Shujun Geng Aqiang Chen Yan Liu Haidong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期1-12,共12页
Solid physical properties are vital for the design, optimization, and scale-up of gas–liquid–solid multiphase reactors. The complex and interactional effects of the solid physical properties, including particle diam... Solid physical properties are vital for the design, optimization, and scale-up of gas–liquid–solid multiphase reactors. The complex and interactional effects of the solid physical properties, including particle diameter, density, wettability, and sphericity, on the hydrodynamic behaviors in a new external airlift loop reactor(EALR) integrating mixing and separation are decoupled in this work. Two semi-empirical equations are proposed and validated to predict the overall gas holdup and liquid circulating velocity satisfactorily, and then the individual influence of such solid physical properties is further investigated. The results demonstrate that both the overall gas holdup in the riser and the liquid circulating velocity in the downcomer increase with the contact angle, but decrease with particle size, density, and sphericity.Additionally, the impact of the particle size on the liquid circulating velocity is also profoundly revealed on a micro-level considering the particle size distribution. Moreover, the axial solid concentration distribution is discussed, and the uniformity of the slurry is described by the mixing index of the solid particles. The results show that a more homogeneous mixture can be achieved by adding finer particles other than attaining violent turbulence. Therefore, this work lays a foundation for the design, scale-up, and industrialization of the EALRs. 展开更多
关键词 Slurry reactor HYDRODYNAMICS Particle MIXING Solid physical property
下载PDF
An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle 被引量:2
18
作者 Chao Zhang Youzhi Liu +3 位作者 Weizhou Jiao Hongyan Shen Xigang Yuan Shengkun Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期83-88,共6页
In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can b... In this study,an optimization method is proposed to enhance the gas–liquid mass transfer in bubble column reactor based on the entropy generation extremum principle.The mass transfer–induced entropy generation can be maximized with the increase of mass transfer rate,based on which the velocity field can be optimized.The oxygen gas–liquid mass transfer is the major rate–limiting step of the toluene emissions biodegradation process in bubble column reactor,so the entropy generation due to oxygen mass transfer is used as the objective function,and the conservation equations of the gas–liquid flow and species concentration are taken as constraints.This optimization problem is solved by the calculus of variations,the optimal liquid flow pattern is obtained and the relationship of the maximum mass transfer enhancement on viscous dissipation is revealed,which can be used to improve the design of internal structure of the bubble column reactor. 展开更多
关键词 Entropy generation Bubble column reactor OPTIMIZATION BIODEGRADATION Flow field
下载PDF
Development of multi-group Monte-Carlo transport and depletion coupling calculation method and verification with metal-fueled fast reactor 被引量:2
19
作者 Hui Guo Yi‑Wei Wu +2 位作者 Qu‑Fei Song Yu‑Yang Shen Han‑Yang Gu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第11期20-39,共20页
The accurate modeling of depletion,intricately tied to the solution of the neutron transport equation,is crucial for the design,analysis,and licensing of nuclear reactors and their fuel cycles.This paper introduces a ... The accurate modeling of depletion,intricately tied to the solution of the neutron transport equation,is crucial for the design,analysis,and licensing of nuclear reactors and their fuel cycles.This paper introduces a novel multi-group Monte-Carlo depletion calculation approach.Multi-group cross-sections(MGXS)are derived from both 3D whole-core model and 2D fuel subassembly model using the continuous-energy Monte-Carlo method.Core calculations employ the multi-group Monte-Carlo method,accommodating both homogeneous and specific local heterogeneous geometries.The proposed method has been validated against the MET-1000 metal-fueled fast reactors,using both the OECD/NEA benchmark and a new refueling benchmark introduced in this paper.Our findings suggest that microscopic MGXS,produced via the Monte-Carlo method,are viable for fast reactor depletion analyses.Furthermore,the locally heterogeneous model with angular-dependent MGXS offers robust predictions for core reactivity,control rod value,sodium void value,Doppler constants,power distribution,and concentration levels. 展开更多
关键词 Monte-Carlo Multi-group cross-section generation Depletion Fast reactors Metallic fuel
下载PDF
Application of silicon carbide temperature monitors in 49-2 swimming-pool test reactor 被引量:1
20
作者 宁广胜 张利民 +6 位作者 钟巍华 王绳鸿 刘心语 汪定平 何安平 刘健 张长义 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期97-101,共5页
High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10... High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10^(20)n/cm^(2).The isochronal and isothermal annealing behaviors of the irradiated SiC were investigated by x-ray diffraction and four-point probe techniques.Invisible point defects and defect clusters are found to be the dominating defect types in the neutron-irradiated SiC.The amount of defect recovery in SiC reaches a maximum value after isothermal annealing for 30 min.Based on the annealing temperature dependences of both lattice swelling and material resistivity,the irradiation temperature of the SiC monitors is determined to be~410℃,which is much higher than the thermocouple temperature of 275℃ recorded during neutron irradiation.The possible reasons for the difference are carefully discussed. 展开更多
关键词 silicon carbide irradiation temperature monitor research reactor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部