期刊文献+
共找到2,872篇文章
< 1 2 144 >
每页显示 20 50 100
Hyphae-mediated bioassembly of carbon fibers derivatives for advanced battery energy storage
1
作者 Lei Huang Zhong Qiu +10 位作者 Ping Liu Xinhui Xia Feng Cao Xinping He Chen Wang Wangjun Wan Yongqi Zhang Yang Xia Wenkui Zhang Minghua Chen Jiancang Zhou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期140-150,共11页
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei... Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices. 展开更多
关键词 bioassembly carbon fibers energy storage graphene lithium-sulfur batteries
下载PDF
An Investigation of Battery Energy Storage Aided Wind-Coal Integrated Energy System 被引量:1
2
作者 Enhui Sun Jiahao Shi +3 位作者 Lei Zhang Hongfu Ji Qian Zhang Yongyi Li 《Energy Engineering》 EI 2023年第7期1583-1602,共20页
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi... This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively. 展开更多
关键词 Wind power lithium-iron phosphate battery energy storage system coal-fired power integrated energy system
下载PDF
A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation 被引量:1
3
作者 Wei Chen Na Sun +2 位作者 Zhicheng Ma Wenfei Liu Haiying Dong 《Energy Engineering》 EI 2023年第6期1445-1464,共20页
To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra... To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit. 展开更多
关键词 battery energy storage secondary FM signal distribution mode charge state two-layer fuzzy control
下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
4
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 Li-ion batteries energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Methylene blue intercalated vanadium oxide with synergistic energy storage mechanism for highly efficient aqueous zinc ion batteries
5
作者 Yunxiao Tong Ying Zang +8 位作者 Senda Su Yinggui Zhang Junzhuo Fang Yongqing Yang Xiaoman Li Xiang Wu Fuming Chen Jianhua Hou Min Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期269-279,I0007,共12页
With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hyb... With the rise of aqueous multivalent rechargeable batteries,inorganic-organic hybrid cathodes have attracted more and more attention due to the complement of each other’s advantages.Herein,a strategy of designing hybrid cathode is adopted for high efficient aqueous zinc-ion batteries(AZIBs).Methylene blue(MB)intercalated vanadium oxide(HVO-MB)was synthesized through sol-gel and ion exchange method.Compared with other organic-inorganic intercalation cathode,not only can the MB intercalation enlarge the HVO interlayer spacing to improve ion mobility,but also provide coordination reactions with the Zn^(2+)to enhance the intrinsic electrochemical reaction kinetics of the hybrid electrode.As a key component for the cathode of AZIBs,HVO-MB contributes a specific capacity of 418 mA h g^(-1) at 0.1 A g^(-1),high rate capability(243 mA h g^(-1) at 5 A g^(-1))and extraordinary stability(88%of capacity retention after 2000cycles at a high current density of 5 A g^(-1))in 3 M Zn(CF_(3)SO_(3))_(2) aqueous electrolyte.The electrochemical kinetics reveals HVO-MB characterized with large pseudocapacitance charge storage behavior due to the fast ion migration provided by the coordination reaction and expanded interlayer distance.Furthermore,a mixed energy storage mechanism involving Zn^(2+)insertion and coordination reaction is confirmed by various ex-situ characterization.Thus,this work opens up a new path for constructing the high performance cathode of AZIBs through organic-inorganic hybridization. 展开更多
关键词 Synergistic energy storage mechanism Aqueous zinc-ion batteries Vanadium oxides Pre-intercalation strategy Methylene blue
下载PDF
Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices 被引量:6
6
作者 Xin Wan Tiansheng Mu Geping Yin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期136-164,共29页
The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of ea... The booming wearable/portable electronic devices industry has stimulated the progress of supporting flexible energy storage devices.Excellent performance of flexible devices not only requires the component units of each device to maintain the original performance under external forces,but also demands the overall device to be flexible in response to external fields.However,flexible energy storage devices inevitably occur mechanical damages(extrusion,impact,vibration)/electrical damages(overcharge,over-discharge,external short circuit)during longterm complex deformation conditions,causing serious performance degradation and safety risks.Inspired by the healing phenomenon of nature,endowing energy storage devices with self-healing capability has become a promising strategy to effectively improve the durability and functionality of devices.Herein,this review systematically summarizes the latest progress in intrinsic self-healing chemistry for energy storage devices.Firstly,the main intrinsic self-healing mechanism is introduced.Then,the research situation of electrodes,electrolytes,artificial interface layers and integrated devices based on intrinsic self-healing and advanced characterization technology is reviewed.Finally,the current challenges and perspective are provided.We believe this critical review will contribute to the development of intrinsic self-healing chemistry in the flexible energy storage field. 展开更多
关键词 Flexible energy storage Intrinsic self-healing chemistry Lithium-ion battery Supercapacitor Advanced characterizations
下载PDF
Recent advances in 3D printed electrode materials for electrochemical energy storage devices 被引量:1
7
作者 Suhail Mubarak Duraisami Dhamodharan Hun-Soo Byun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期272-312,I0008,共42页
Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable r... Electrochemical energy storage(EES)systems like batteries and supercapacitors are becoming the key power sources for attempts to change the energy dependency from inadequate fossil fuels to sustainable and renewable resources.Electrochemical energy storage devices(EESDs)operate efficiently as a result of the construction and assemblage of electrodes and electrolytes with appropriate structures and effective materials.Conventional manufacturing procedures have restrictions on regulating the morphology and architecture of the electrodes,which would influence the performance of the devices.3D printing(3DP)is an advanced manufacturing technology combining computer-aided design and has been recognised as an artistic method of fabricating different fragments of energy storage devices with its ability to precisely control the geometry,porosity,and morphology with improved specific energy and power densities.The capacity to create mathematically challenging shape or configuration designs and high-aspect-ratio 3D architectures makes 3D printing technology unique in its benefits.Nevertheless,the control settings,interactive manufacturing processes,and protracted post-treatments will affect the reproducibility of the printed components.More intelligent software,sophisticated control systems,high-grade industrial equipment,and post-treatment-free methods are necessary to develop.3D printed(3DPd)EESDs necessitate dynamic printable materials and composites that are influenced by performance criteria and fundamental electrochemistry.Herein,we review the recent advances in 3DPd electrodes for EES applications.The emphasis is on printable material synthesis,3DP techniques,and the electrochemical performance of printed electrodes.For the fabrication of electrodes,we concentrate on major 3DP technologies such as direct ink writing(DIW),inkjet printing(IJP),fused deposition modelling(FDM),and stereolithography3DP(SLA).The benefits and drawbacks of each 3DP technology are extensively discussed.We provide an outlook on the integration of synthesis of emerging nanomaterials and fabrication of complex structures from micro to macroscale to construct highly effective electrodes for the EESDs. 展开更多
关键词 3D printing 3D printed electrodes Electrochemical energy storage Lithium-ion battery Zinc-ion battery SUPERCAPACITOR
下载PDF
Application and Progress of Confinement Synthesis Strategy in Electrochemical Energy Storage
8
作者 Yike Xu Zhenyu Liu +3 位作者 Wenhua Cong Jingwen Zhao Xuguang Liu Meiling Wang 《Transactions of Tianjin University》 EI CAS 2023年第2期151-187,共37页
Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively comb... Designing high-performance nanostructured electrode materials is the current core of electrochemical energy storage devices.Multi-scaled nanomaterials have triggered considerable interest because they effectively combine a library of advantages of each component on different scales for energy storage.However,serious aggregation,structural degradation,and even poor stability of nanomaterials are well-known issues during electrochemically driven volume expansion/contraction processes.The confinement strategy provides a new route to construct controllable internal void spaces to avoid the intrinsic volume effects of nanomaterials during the reaction or charge/discharge process.Herein,we discuss the confinement strategies and methods for energy storage-related electrode materials with a one-dimensional channel,two-dimensional interlayer,and three-dimensional space as reaction environments.For each confinement environment,the correlation between the confinement condition/structure and the behavioral characteristics of energy storage devices in the scope of metal-ion batteries(e.g.,Li-ion,Na-ion,K-ion,and Mg-ion batteries),Li-S batteries(LSBs),Zn-air batteries(ZIBs),and supercapacitors.Finally,we discussed the challenges and perspectives on future nanomaterial confinement strategies for electrochemical energy storage devices. 展开更多
关键词 Confi nement Electrochemical energy storage NANOMATERIALS BATTERIES SUPERCAPACITORS
下载PDF
Recent Progress of Conductive Metal-Organic Frameworks for Electrochemical Energy Storage
9
作者 Zhiyuan Sang Yueyu Tong +1 位作者 Feng Hou Ji Liang 《Transactions of Tianjin University》 EI CAS 2023年第2期136-150,共15页
The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate perfo... The development of reliable and low-cost energy storage systems is of considerable value in using renewable and clean energy sources,and exploring advanced electrodes with high reversible capacity,excellent rate performance,and long cycling life for Li/Na/Zn-ion batteries and supercapacitors is the key problem.Particularly because of their diverse structure,high specific surface area,and adjustable redox activity,electrically conductive metal-organic frameworks(c-MOFs)are considered promising candidates for these electrochemical applications,and a detailed overview of the recent progress of c-MOFs for electrochemical energy storage and their intrinsic energy storage mechanism helps realize a comprehensive and systematic understanding of this progress and further achieve highly efficient energy storage and conversion.Herein,the chemical structure of c-MOFs and their conductive mechanism are first introduced.Subsequently,a comprehensive summarization of the current applications of c-MOFs in energy storage systems,namely supercapacitors,LIBs,SIBs,and ZIBs,is presented.Finally,the prospects and challenges of c-MOFs toward much higher-performance energy storage devices are presented,which should illuminate the future scientific research and practical applications of c-MOFs in energy storage fields. 展开更多
关键词 energy storage Conductive metal-organic frameworks BATTERIES SUPERCAPACITORS
下载PDF
2D Metal-Organic Frameworks for Electrochemical Energy Storage
10
作者 Dengyi Xiong Xinglan Deng +7 位作者 Ziwei Cao Shusheng Tao Zirui Song Xuhuan Xiao Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期33-49,共17页
Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust por... Metal-organic frameworks(MOFs)have been widely adopted in various fields(catalysis,sensor,energy storage,etc.)during the last decade owing to the trait of abundant surface chemistry,porous structure,easy-to-adjust pore size,and diverse functional groups.However,the limited active sites and the poor conductivity hinder the relative practical application.2D MOFs can shorten the ion transport path with the merit of layered structure.The large surface area can increase the number of active sites as well as effectively utilize the sufficient active sites,exhibiting enormous potential in the field of energy storage systems(EESs).In this review,the characteristics of the 2D MOFs have been introduced,and the systematic synthesis methods(top-down and bottom-up)of 2D MOFs are presented,providing fundamental understanding for the construction of 2D MOFs.Moreover,the applications of 2D MOFs in energy storage fields such as supercapacitors and batteries are demonstrated in detail.Finally,the future development prospects have been proposed,offering guidelines for the rational utilization of 2D MOFs and promoting the understanding of 2D MOFs in EESs. 展开更多
关键词 BATTERIES electrochemical energy storage SUPERCAPACITORS 2D metal-organic frameworks
下载PDF
Novel Insights into Energy Storage Mechanism of Aqueous Rechargeable Zn/MnO2 Batteries with Participation of Mn2+ 被引量:14
11
作者 Yongfeng Huang Jian Mou +4 位作者 Wenbao Liu Xianli Wang Liubing Dong Feiyu Kang Chengjun Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期227-239,共13页
Aqueous rechargeable Zn/MnO2 zinc-ion batteries(ZIBs)are reviving recently due to their low cost,non-toxicity,and natural abundance.However,their energy storage mechanism remains controversial due to their complicated... Aqueous rechargeable Zn/MnO2 zinc-ion batteries(ZIBs)are reviving recently due to their low cost,non-toxicity,and natural abundance.However,their energy storage mechanism remains controversial due to their complicated electrochemical reactions.Meanwhile,to achieve satisfactory cyclic stability and rate performance of the Zn/MnO2 ZIBs,Mn2+ is introduced in the electrolyte(e.g.,ZnSO4 solution),which leads to more complicated reactions inside the ZIBs systems.Herein,based on comprehensive analysis methods including electrochemical analysis and Pourbaix diagram,we provide novel insights into the energy storage mechanism of Zn/MnO2 batteries in the presence of Mn2+.A complex series of electrochemical reactions with the coparticipation of Zn2+,H+,Mn2+,SO42-,and OH-were revealed.During the first discharge process,co-insertion of Zn2+ and H+ promotes the transformation of MnO2 into ZnxMnO4,MnOOH,and Mn2O3,accompanying with increased electrolyte pH and the formation of ZnSO4·3 Zn(OH)2-5 H2O.During the subsequent charge process,ZnxMnO4,MnOOH,and Mn2O3 revert to a-MnO2 with the extraction of Zn2+ and H+,while ZnSO4·3Zn(OH)2·5H2O reacts with Mn2+ to form ZnMn3O7·3 H2O.In the following charge/discharge processes,besides aforementioned electrochemical reactions,Zn2+ reversibly insert into/extract from α-MnO2,ZnxMnO4,and ZnMn3O7·3H2O hosts;ZnSO4·3Zn(OH)2·5 H2O,Zn2Mn3O8,and ZnMn2O4 convert mutually with the participation of Mn2+.This work is believed to provide theoretical guidance for further research on high-performance ZIBs. 展开更多
关键词 Zinc-ion battery MNO2 CATHODE energy storage MECHANISM Phase evolution
下载PDF
Recent advances in energy storage mechanism of aqueous zinc-ion batteries 被引量:15
12
作者 Duo Chen Mengjie Lu +2 位作者 Dong Cai Hang Yang Wei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期712-726,共15页
Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the com... Aqueous rechargeable zinc-ion batteries(ZIBs)have recently attracted increasing research interest due to their unparalleled safety,fantastic cost competitiveness and promising capacity advantages compared with the commercial lithium ion batteries.However,the disputed energy storage mechanism has been a confusing issue restraining the development of ZIBs.Although a lot of efforts have been dedicated to the exploration in battery chemistry,a comprehensive review that focuses on summarizing the energy storage mechanisms of ZIBs is needed.Herein,the energy storage mechanisms of aqueous rechargeable ZIBs are systematically reviewed in detail and summarized as four types,which are traditional Zn^(2+)insertion chemistry,dual ions co-insertion,chemical conversion reaction and coordination reaction of Zn^(2+)with organic cathodes.Furthermore,the promising exploration directions and rational prospects are also proposed in this review. 展开更多
关键词 Zinc-ion batteries energy storage mechanism Rechargeable aqueous battery Zn-MnO_(2)battery Electrolytic battery
下载PDF
Building a Cloud-Based Energy Storage System through Digital Transformation of Distributed Backup Battery in Mobile Base Stations 被引量:10
13
作者 Song Ci Yanglin Zhou +2 位作者 Yuan Xu Xingjian Diao Junwei Wang 《China Communications》 SCIE CSCD 2020年第4期42-50,共9页
Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and... Battery energy storage systems(ESS) have been widely used in mobile base stations(BS) as the main backup power source. Due to the large number of base stations, massive distributed ESSs have largely stayed in idle and very difficult to achieve high asset utilization. In recent years, the fast-paced development of digital energy storage(DES) technology has revolutionized the traditional operation and maintenance of ESSs by transforming them into digital assets, further enabling battery energy storage services, raising up a new way to achieve a much higher utilization of such kind of largely idle ESS resources. In this paper, the disruptive DES technology will be introduced and its application under the context of mobile BSs will be studied, and then a cloud-based energy storage(CES) platform is proposed based on a large scale distributed DESs to provide a new cyber-enabled energy storage service to the local utility company. A real-world case study shows the effectiveness and efficiency of the CES platform. 展开更多
关键词 digital energy storage dynamic RECONFIGURABLE battery network energy DIGITIZATION software-defined battery system cloud energy storage
下载PDF
Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems 被引量:11
14
作者 Tianmei Chen Yi Jin +5 位作者 Hanyu Lv Antao Yang Meiyi Liu Bing Chen Ying Xie Qiang Chen 《Transactions of Tianjin University》 EI CAS 2020年第3期208-217,共10页
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-... In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems. 展开更多
关键词 LITHIUM-ION batteries Grid-level energy storage system Frequency regulation and peak SHAVING RENEWABLE energy integration Power management
下载PDF
Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage 被引量:15
15
作者 Xiayue Fan Bin Liu +8 位作者 Jie Liu Jia Ding Xiaopeng Han Yida Deng Xiaojun Lv Ying Xie Bing Chen Wenbin Hu Cheng Zhong 《Transactions of Tianjin University》 EI CAS 2020年第2期92-103,共12页
Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, ... Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES. 展开更多
关键词 battery TECHNOLOGIES Grid-level LARGE-SCALE ELECTRICAL energy storage Peak shaving and load leveling Voltage and frequency regulation Emergency response
下载PDF
Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors 被引量:5
16
作者 Kai Dong Zhong Lin Wang 《Journal of Semiconductors》 EI CAS CSCD 2021年第10期57-70,共14页
Lightweight and flexible self-charging power systems with synchronous energy harvesting and energy storage abilities are highly desired in the era of the internet of things and artificial intelligences,which can provi... Lightweight and flexible self-charging power systems with synchronous energy harvesting and energy storage abilities are highly desired in the era of the internet of things and artificial intelligences,which can provide stable,sustainable,and autonomous power sources for ubiquitous,distributed,and low-power wearable electronics.However,there is a lack of comprehensive review and challenging discussion on the state-of-the-art of the triboelectric nanogenetor(TENG)-based self-charging power textiles,which have a great possibility to become the future energy autonomy power sources.Herein,the recent progress of the self-charging power textiles hybridizing fiber/fabric based TENGs and fiber/fabric shaped batteries/supercapacitors is comprehensively summarized from the aspect of textile structural designs.Based on the current research status,the key bottlenecks and brighter prospects of self-charging power textiles are also discussed in the end.It is hoped that the summary and prospect of the latest research of self-charging power textiles can help relevant researchers accurately grasp the research progress,focus on the key scientific and technological issues,and promote further research and practical application process. 展开更多
关键词 self-charging power textiles triboelectric nanogenerators energy harvesting batteries/supercapacitors energy storage power management system
下载PDF
A distributed VSG control method for a battery energy storage system with a cascaded H-bridge in a grid-connected mode 被引量:4
17
作者 Yichi Cai Donglian Qi 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期343-352,共10页
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ... With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method. 展开更多
关键词 VSG Cascaded H-bridge converters battery energy storage system Renewable energy integration
下载PDF
Multivalent metal-sulfur batteries for green and cost-effective energy storage:Current status and challenges 被引量:2
18
作者 Yue Yang Haoyi Yang +2 位作者 Xinran Wang Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期144-165,I0005,共23页
Multivalent metal-sulfur(M-S,where M=Mg,Al,Ca,Zn,Fe,etc.)batteries offer unique opportunities to achieve high specific capacity,elemental abundancy and cost-effectiveness beyond lithium-ion batteries(LIBs).However,the... Multivalent metal-sulfur(M-S,where M=Mg,Al,Ca,Zn,Fe,etc.)batteries offer unique opportunities to achieve high specific capacity,elemental abundancy and cost-effectiveness beyond lithium-ion batteries(LIBs).However,the slow diffusion of multivalent-metal ions and the shuttle of soluble polysulfide result in impoverished reversible capacity and limited cycle performance of M-S(Mg-S,Al-S,Ca-S,Zn-S,Fe-S,etc.)batteries.It is a necessity to optimize the electrochemical performance,while deepening the understanding of the unique electrochemical reaction mechanism,such as the intrinsic multi-electron reaction process,polysulfides dissoluti on and the in stability of metal an odes.To solve these problems,we have summarized the state-of-the-art progress of current M-S batteries,and sorted out the existing challen ges for different multivalent M-S batteries according to sulfur cathode,electrolytes,metallic an ode and current collectors/separators,respectively.In this literature,we have surveyed and exemplified the strategies developed for better M-S batteries to strengthen the application of green,cost-effective and high energy density M-S batteries. 展开更多
关键词 Multivale nt metal-sulfur batteries COST-EFFECTIVENESS Green energy storage Shuttle effect Electrolyte
下载PDF
Opportunities and challenges of organic flow battery for electrochemical energy storage technology 被引量:2
19
作者 Ziming Zhao Changkun Zhang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期621-639,共19页
For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-acti... For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted. 展开更多
关键词 Electrochemical energy storage Flow battery Organic systems Organic redox-active molecules
下载PDF
Battery Energy Storage to Strengthen the Wind Generator in Integrated Power System 被引量:2
20
作者 Sharad W. Mohod Mohan V. Aware 《Journal of Electronic Science and Technology》 CAS 2011年第1期23-30,共8页
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.... The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers. 展开更多
关键词 battery energy storage power quality wind energy generating system.
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部