Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably th...Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed.展开更多
Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries.Among various alternative electrochemical energy storage devices,sodium-ion bat...Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries.Among various alternative electrochemical energy storage devices,sodium-ion battery outstands with advantages of cost-effectiveness and comparable energy density with lithium-ion batteries.Thanks to the similar electrochemical mechanism,the research and development of lithium-ion batteries have forged a solid foundation for sodium-ion battery explorations.Advancements in sodium-ion batteries have been witnessed in terms of superior electrochemical performance and broader application scenarios.Here,the strategies adopted to optimize the battery components(cathode,anode,electrolyte,separator,binder,current collector,etc.)and the cost,safety,and commercialization issues in sodium-ion batteries are summarized and discussed.Based on these optimization strategies,assembly of functional(flexible,stretchable,self-healable,and self-chargeable)and integrated sodium-ion batteries(−actuators,−sensors,electrochromic,etc.)have been realized.Despite these achievements,challenges including energy density,scalability,trade-off between energy density and functionality,cost,etc.are to be addressed for sodium-ion battery commercialization.This review aims at providing an overview of the up-to-date achievements in sodium-ion batteries and serves to inspire more efforts in designing upgraded sodium-ion batteries.展开更多
Hard carbon(HC)has emerged as one of the superior anode materials for sodium-ion batteries(SIBs),with its electrochemical performance significantly influenced by the presence of oxygen functional groups and its closed...Hard carbon(HC)has emerged as one of the superior anode materials for sodium-ion batteries(SIBs),with its electrochemical performance significantly influenced by the presence of oxygen functional groups and its closed pore structure.However,current research on the structural adjustment of these oxygen functional groups and the closed pore architecture within HC remains limited.Herein,energy-efficient and contamination-free spark plasma sintering technology was employed to tune the structure of coconut-shell HC,resulting in significant adjustments to the content of carboxyl(decreasing from 5.71 at%to 2.12 at%)and hydroxyl groups(decreasing from 7.73 at%to 6.26 at%).Crucially,these modifications reduced the irreversible reaction of oxygen functional groups with Na^(+).Simultaneously,a substantial number of closed pores with an average diameter of 1.22 nm were generated within the HC,offering an ideal environment for efficient Na^(+)accommodation.These structural changes resulted in a remarkable improvement in the electrochemical performance of the modified HC.The reversible specific capacity of the modified HC surged from 73.89 mAh·g^(-1)to an impressive 251.97 m Ah·g^(-1)at a current density of 50 mA·g^(-1).Even at 400 mA·g^(-1),the reversible specific capacity increased significantly from 14.55 to 85.44 mAh·g^(-1).Hence,this study provides a novel perspective for designing tailored HC materials with the potential to develop high-performance SIBs.展开更多
Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during ins...Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during insertion and removal of Na+in P_(2)-type layered transition metal oxides generate structura instability and severe capacity decay.To get rid of such a dilemma,we report a structural optimization strategy to promote P2-type layered transition metal oxides with more(010)active planes as an efficien cathode for SIBs.As a result,as-prepared hexagonal-prism P2-type layered Na_(0.71)Ni_(0.16)Li_(0.09)Co_(0.16)Mn0.6O_(2)cathode with more(010)active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C,impressive rate capability of 52.7 m Ah/g at 10 C,and long-term cycling stability(capacity retention of 95.6%ove200 cycles).The outstanding electrochemical performance benefited from the unique hexagonal-prism with more(010)active facets,which can effectively shorten the diffusion distances of Na+,increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology character ization,Rietveld refinement,GITT,density functional theory calculations and operando XRD.展开更多
Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety ...Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety need further improvement for practical applications.Investigations on the reaction mechanisms and structural degradation when cycling are of great importance.In situ transmission electron microscopy(TEM)is one of the most significant techniques to understand and monitor electrochemical processes at an atomic scale with real-time imaging.In this review,the current progress in unraveling reaction mechanisms of electrode materials for SIBs and PIBs via in situ TEM is summarized.First,the importance of in situ TEM is highlighted.Then,based on the three types of electrochemical reaction,i.e.,intercalation reac-tion,conversion reaction and alloying reaction,the structural evolution and reaction kinetics at atomic resolution,and their relation to the electrochemical performance of electrode materials are reviewed and described in detail.Fi-nally,future directions of in situ TEM for SIBs and PIBs are proposed.Therefore,the in‐depth understanding revealed by in situ TEM will give an instructive guide in rational design of electrode materials for high performance electrode materials of SIBs and PIBs.展开更多
Sodium-ion batteries(SIBs)possess promising application prospects for large-scale energy storage systems due to the abundance of sodium ions as a resource and their low cost.Development of advanced SIBs requires a cle...Sodium-ion batteries(SIBs)possess promising application prospects for large-scale energy storage systems due to the abundance of sodium ions as a resource and their low cost.Development of advanced SIBs requires a clear understanding of the structures and kinetic/dynamic processes occurring in the cells during the charging/discharging process.In situ transmission electron microscopy(TEM)is a powerful tool for direct visualization of the phase transitions as well as morphological and structural evolutions of the electrodes during the electrochemical reaction process.Herein,we summarize the state-of-the-art in situ TEM studies on SIBs with a specific focus on real-time observations of the electrochemical behavior of battery materials.This review emphasizes the necessity of in situ TEM to elucidate fundamental issues regarding the reaction mechanism,phase transformation,structural evolution,and performance degradation of SIBs.Finally,critical challenges and emerging opportunities for in situ TEM research about SIBs are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21771164,U1804129)the Natural Science Foundation of Henan Province(No.222300420525)the Zhongyuan Youth Talent Support Program of Henan Province
文摘Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed.
基金supported by the National Natural Science Foundation of China(No.52202320)the Fundamental Research Funds for the Central Universities(No.862201013153)+2 种基金the Shandong Excel ent Young Scientists Fund Program(Overseas)(2023HWYQ-060)the Ministry of Education Ac RF Tier 1 Award RT15/20,SingaporeD.H.C.C.acknowledges the funding support from NUS R284000-227-114
文摘Exploration of alternative energy storage systems has been more than necessary in view of the supply risks haunting lithium-ion batteries.Among various alternative electrochemical energy storage devices,sodium-ion battery outstands with advantages of cost-effectiveness and comparable energy density with lithium-ion batteries.Thanks to the similar electrochemical mechanism,the research and development of lithium-ion batteries have forged a solid foundation for sodium-ion battery explorations.Advancements in sodium-ion batteries have been witnessed in terms of superior electrochemical performance and broader application scenarios.Here,the strategies adopted to optimize the battery components(cathode,anode,electrolyte,separator,binder,current collector,etc.)and the cost,safety,and commercialization issues in sodium-ion batteries are summarized and discussed.Based on these optimization strategies,assembly of functional(flexible,stretchable,self-healable,and self-chargeable)and integrated sodium-ion batteries(−actuators,−sensors,electrochromic,etc.)have been realized.Despite these achievements,challenges including energy density,scalability,trade-off between energy density and functionality,cost,etc.are to be addressed for sodium-ion battery commercialization.This review aims at providing an overview of the up-to-date achievements in sodium-ion batteries and serves to inspire more efforts in designing upgraded sodium-ion batteries.
基金financially supported by the National Natural Science Foundation of China(No.52062012)Guangdong Province Key Discipline Construction Project(No.2021ZDJS102)+2 种基金the Innovation Team of Universities of Guangdong Province(No.2022KCXTD030)the Special Fund for Science and Technology Innovation Cultivation of Guangdong University Students(No.pdjh2023b0549)the Student Academic Fund of Foshan University(No.xsjj202206kjb02)。
文摘Hard carbon(HC)has emerged as one of the superior anode materials for sodium-ion batteries(SIBs),with its electrochemical performance significantly influenced by the presence of oxygen functional groups and its closed pore structure.However,current research on the structural adjustment of these oxygen functional groups and the closed pore architecture within HC remains limited.Herein,energy-efficient and contamination-free spark plasma sintering technology was employed to tune the structure of coconut-shell HC,resulting in significant adjustments to the content of carboxyl(decreasing from 5.71 at%to 2.12 at%)and hydroxyl groups(decreasing from 7.73 at%to 6.26 at%).Crucially,these modifications reduced the irreversible reaction of oxygen functional groups with Na^(+).Simultaneously,a substantial number of closed pores with an average diameter of 1.22 nm were generated within the HC,offering an ideal environment for efficient Na^(+)accommodation.These structural changes resulted in a remarkable improvement in the electrochemical performance of the modified HC.The reversible specific capacity of the modified HC surged from 73.89 mAh·g^(-1)to an impressive 251.97 m Ah·g^(-1)at a current density of 50 mA·g^(-1).Even at 400 mA·g^(-1),the reversible specific capacity increased significantly from 14.55 to 85.44 mAh·g^(-1).Hence,this study provides a novel perspective for designing tailored HC materials with the potential to develop high-performance SIBs.
基金financially supported by the National Natural Science Foundation of China(Nos.52372188,51902090)Henan Key Research Project Plan for Higher Education Institutions(No.23A150038)+6 种基金2023 Introduction of Studying Abroad Talent Program“111”Project(No.D17007)Henan Provincial Key Scientific Research Project of Colleges and Universities(No23A150038)Key Scientific Research Project of Education Department of Henan Province(No.22A150042)the National Students’Platform for Innovation and Entrepreneurship Training Program(No.201910476010)the China Postdoctoral Science Foundation(No.2019 M652546)the Henan Province Postdoctoral StartUp Foundation(No.1901017)。
文摘Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during insertion and removal of Na+in P_(2)-type layered transition metal oxides generate structura instability and severe capacity decay.To get rid of such a dilemma,we report a structural optimization strategy to promote P2-type layered transition metal oxides with more(010)active planes as an efficien cathode for SIBs.As a result,as-prepared hexagonal-prism P2-type layered Na_(0.71)Ni_(0.16)Li_(0.09)Co_(0.16)Mn0.6O_(2)cathode with more(010)active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C,impressive rate capability of 52.7 m Ah/g at 10 C,and long-term cycling stability(capacity retention of 95.6%ove200 cycles).The outstanding electrochemical performance benefited from the unique hexagonal-prism with more(010)active facets,which can effectively shorten the diffusion distances of Na+,increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology character ization,Rietveld refinement,GITT,density functional theory calculations and operando XRD.
基金This work was supported by the National Natural Science Foundation of China(52072282)The authors also wish to acknowledge support from the National Key Research and Development Program of China(2019YFA0704900)the Fundamental Research Fund for the Central Universities(WUT:2021III016GX).
文摘Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety need further improvement for practical applications.Investigations on the reaction mechanisms and structural degradation when cycling are of great importance.In situ transmission electron microscopy(TEM)is one of the most significant techniques to understand and monitor electrochemical processes at an atomic scale with real-time imaging.In this review,the current progress in unraveling reaction mechanisms of electrode materials for SIBs and PIBs via in situ TEM is summarized.First,the importance of in situ TEM is highlighted.Then,based on the three types of electrochemical reaction,i.e.,intercalation reac-tion,conversion reaction and alloying reaction,the structural evolution and reaction kinetics at atomic resolution,and their relation to the electrochemical performance of electrode materials are reviewed and described in detail.Fi-nally,future directions of in situ TEM for SIBs and PIBs are proposed.Therefore,the in‐depth understanding revealed by in situ TEM will give an instructive guide in rational design of electrode materials for high performance electrode materials of SIBs and PIBs.
基金the National Natural Science Foundation of China(grant nos.12274371,62271450,21805247,and 52072345).
文摘Sodium-ion batteries(SIBs)possess promising application prospects for large-scale energy storage systems due to the abundance of sodium ions as a resource and their low cost.Development of advanced SIBs requires a clear understanding of the structures and kinetic/dynamic processes occurring in the cells during the charging/discharging process.In situ transmission electron microscopy(TEM)is a powerful tool for direct visualization of the phase transitions as well as morphological and structural evolutions of the electrodes during the electrochemical reaction process.Herein,we summarize the state-of-the-art in situ TEM studies on SIBs with a specific focus on real-time observations of the electrochemical behavior of battery materials.This review emphasizes the necessity of in situ TEM to elucidate fundamental issues regarding the reaction mechanism,phase transformation,structural evolution,and performance degradation of SIBs.Finally,critical challenges and emerging opportunities for in situ TEM research about SIBs are discussed.