Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja...Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.展开更多
This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengin...This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengine.Initially,the study establishes the compressor dynamic model with uncertainties,disturbances,and Close-Coupled Valve(CCV)actuator delay.Building upon this foundation,a Partially Observable Markov Decision Process(POMDP)is defined to facilitate active surge control.To address the issue of unobservability,a nonlinear state observer is designed using a finite-time high-order sliding mode.Furthermore,an Improved Soft Actor-Critic(ISAC)algorithm is developed,incorporating prioritized experience replay and adaptive temperature parameter techniques,to strike a balance between exploration and convergence during training.In addition,reasonable observation variables,error-segmented reward functions,and random initialization of model parameters are employed to enhance the robustness and generalization capability.Finally,to assess the effectiveness of the proposed method,numerical simulations are conducted,and it is compared with the fuzzy adaptive backstepping method and Second-Order Sliding Mode Control(SOSMC)method.The simulation results demonstrate that the deep reinforcement learning based controller outperforms other methods in both tracking accuracy and robustness.Consequently,the proposed active surge controller can effectively ensure stable operation of compressors in the high-pressure-ratio and high-efficiency region.展开更多
基金supported by National Natural Science Foundation of China(52222215, 52272420, 52072051)。
文摘Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees.
基金co-supported by the National Natural Science Foundation of China(No.51976089)the Science Center for Gas Turbine Project,China(No.P2023-B-V-001-001)the China Scholarship Council(No.202306830092).
文摘This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengine.Initially,the study establishes the compressor dynamic model with uncertainties,disturbances,and Close-Coupled Valve(CCV)actuator delay.Building upon this foundation,a Partially Observable Markov Decision Process(POMDP)is defined to facilitate active surge control.To address the issue of unobservability,a nonlinear state observer is designed using a finite-time high-order sliding mode.Furthermore,an Improved Soft Actor-Critic(ISAC)algorithm is developed,incorporating prioritized experience replay and adaptive temperature parameter techniques,to strike a balance between exploration and convergence during training.In addition,reasonable observation variables,error-segmented reward functions,and random initialization of model parameters are employed to enhance the robustness and generalization capability.Finally,to assess the effectiveness of the proposed method,numerical simulations are conducted,and it is compared with the fuzzy adaptive backstepping method and Second-Order Sliding Mode Control(SOSMC)method.The simulation results demonstrate that the deep reinforcement learning based controller outperforms other methods in both tracking accuracy and robustness.Consequently,the proposed active surge controller can effectively ensure stable operation of compressors in the high-pressure-ratio and high-efficiency region.