期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Path Planning and Tracking Control for Parking via Soft Actor-Critic Under Non-Ideal Scenarios 被引量:2
1
作者 Xiaolin Tang Yuyou Yang +3 位作者 Teng Liu Xianke Lin Kai Yang Shen Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期181-195,共15页
Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adja... Parking in a small parking lot within limited space poses a difficult task. It often leads to deviations between the final parking posture and the target posture. These deviations can lead to partial occupancy of adjacent parking lots, which poses a safety threat to vehicles parked in these parking lots. However, previous studies have not addressed this issue. In this paper, we aim to evaluate the impact of parking deviation of existing vehicles next to the target parking lot(PDEVNTPL) on the automatic ego vehicle(AEV) parking, in terms of safety, comfort, accuracy, and efficiency of parking. A segmented parking training framework(SPTF) based on soft actor-critic(SAC) is proposed to improve parking performance. In the proposed method, the SAC algorithm incorporates strategy entropy into the objective function, to enable the AEV to learn parking strategies based on a more comprehensive understanding of the environment. Additionally, the SPTF simplifies complex parking tasks to maintain the high performance of deep reinforcement learning(DRL). The experimental results reveal that the PDEVNTPL has a detrimental influence on the AEV parking in terms of safety, accuracy, and comfort, leading to reductions of more than 27%, 54%, and 26%respectively. However, the SAC-based SPTF effectively mitigates this impact, resulting in a considerable increase in the parking success rate from 71% to 93%. Furthermore, the heading angle deviation is significantly reduced from 2.25 degrees to 0.43degrees. 展开更多
关键词 Automatic parking control strategy parking deviation(APS) soft actor-critic(sac)
下载PDF
基于SAC模型的改进遗传算法求解TSP问题 被引量:15
2
作者 陈斌 刘卫国 《计算机科学与探索》 CSCD 北大核心 2021年第9期1680-1693,共14页
遗传算法(GA)的全局搜索能力强,易于操作,但其收敛速度慢,易陷入局部最优值。针对以上问题,利用深度强化学习模型SAC对遗传算法进行改进,并将其应用至旅行商问题(TSP)的求解。改进算法将种群作为与智能体(agent)交互的环境,引入贪心算... 遗传算法(GA)的全局搜索能力强,易于操作,但其收敛速度慢,易陷入局部最优值。针对以上问题,利用深度强化学习模型SAC对遗传算法进行改进,并将其应用至旅行商问题(TSP)的求解。改进算法将种群作为与智能体(agent)交互的环境,引入贪心算法对环境进行初始化,使用改进后的交叉与变异运算作为agent的动作空间,将种群的进化过程视为一个整体,以最大化种群进化过程的累计奖励为目标,结合当前种群个体适应度情况,采用基于SAC的策略梯度算法,生成控制种群进化的动作策略,合理运用遗传算法的全局和局部搜索能力,优化种群的进化过程,平衡种群收敛速度与遗传操作次数之间的关系。对TSPLIB实例的实验结果表明,改进的遗传算法可有效地避免陷入局部最优解,在提高种群收敛速度的同时,减少寻优过程的迭代次数。 展开更多
关键词 强化学习 遗传算法(GA) 旅行商问题(TSP) 深度策略梯度 soft actor-critic(sac)模型
下载PDF
基于SAC算法的移动机器人智能路径规划 被引量:4
3
作者 杨来义 毕敬 苑海涛 《系统仿真学报》 CAS CSCD 北大核心 2023年第8期1726-1736,共11页
为解决传统的机器人路径规划算法维度高、收敛慢、建模难等问题,提出一种新的路径规划算法。基于深度强化学习SAC(soft actor-critic)算法,旨在解决机器人面对具有静态和动态障碍物的复杂环境时,路径规划表现差的问题。为使机器人快速... 为解决传统的机器人路径规划算法维度高、收敛慢、建模难等问题,提出一种新的路径规划算法。基于深度强化学习SAC(soft actor-critic)算法,旨在解决机器人面对具有静态和动态障碍物的复杂环境时,路径规划表现差的问题。为使机器人快速躲避障碍物且到达目标,设计合理的奖励函数,使用动态的状态归一化和优先级经验技术。为评估该算法性能,构建基于Pygame的仿真环境。将所提算法与近端策略优化(proximal policy optimization,PPO)算法进行比较。实验结果表明:所提算法的累计奖励能够得到显著提高,并且具有更强的鲁棒性。 展开更多
关键词 深度强化学习 路径规划 sac(soft actor-critic)算法 连续奖励函数 移动机器人
下载PDF
孕早期超声软指标联合双胎特有指标评估双绒毛膜双羊膜囊双胎妊娠胎儿结局的研究
4
作者 董宇萌 刘静华 《中国全科医学》 北大核心 2024年第12期1460-1467,共8页
背景随着辅助生殖技术的成熟应用,多胎妊娠的发生率急剧增加,包括早产、胎儿畸形、先兆子痫和妊娠期糖尿病等并发症也随着增多。通过减胎手段可以改善围生期预后及胎儿存活质量,妊娠早期选择性减胎可能会比妊娠中期选择性减胎的预后更佳... 背景随着辅助生殖技术的成熟应用,多胎妊娠的发生率急剧增加,包括早产、胎儿畸形、先兆子痫和妊娠期糖尿病等并发症也随着增多。通过减胎手段可以改善围生期预后及胎儿存活质量,妊娠早期选择性减胎可能会比妊娠中期选择性减胎的预后更佳,提示孕早期尽早评估妊娠结局将改善孕妇及胎儿的预后。目的探讨孕早期超声软指标及双胎特有指标与双绒毛膜双羊膜囊(DCDA)双胎妊娠结局之间的关系。方法回顾性选取2018年5月-2022年5月在深圳市龙岗区妇幼保健院超声医学科就诊的孕早期(11~13^(+6)周)DCDA双胎妊娠孕妇及胎儿为研究对象。分析孕早期DCDA双胎妊娠胎儿超声软指标和双胎特有指标的检出率及其与不良妊娠结局的关系。超声软指标包括:颈后透明层(NT)增厚、脉络丛囊肿、鼻骨发育不良、心室点状强回声、右房室瓣反流、静脉导管a波缺失或倒置、肠管回声增强、肾盂轻度扩张、单脐动脉、右锁骨下动脉迷走。双胎特有指标包括:双胎头臀长(CRL)差异、双胎NT差异、双胎脐带插入(UCI)差异。不良妊娠结局包括:流产、死胎、新生儿死亡、结构异常、遗传学异常,另增加体质量阳性(双胎体质量差异≥25%)作为一种特殊的不良妊娠结局。采用Logistic回归分析探讨孕早期DCDA双胎妊娠胎儿超声软指标及双胎特有指标与胎儿不良妊娠结局的相关性。结果最终纳入418例孕早期DCDA双胎妊娠胎儿,其中正常妊娠结局342例(81.82%),不良妊娠结局76例(18.18%)。孕早期双胎妊娠胎儿超声软指标阳性的总检出率为10.53%(53/418);53例超声软指标阳性的胎儿中共检出61个超声软指标,检出率排名前三位的依次为:NT增厚6.94%(29/418),脉络丛囊肿2.39%(10/418)和鼻骨发育不良1.67%(7/418)。超声软指标阳性胎儿不良妊娠结局发生率为30.19%(16/53),高于超声软指标阴性胎儿不良妊娠结局发生率16.44%(60/365)(χ^(2)=5.882,P=0.015)。二元Logistic回归分析结果显示,双胎CRL差异≥15%是双胎妊娠胎儿不良妊娠结局的危险因素(OR=9.955,95%CI=1.882~52.662,P=0.007),双胎UCI差异阳性是双胎妊娠胎儿体质量阳性的危险因素(OR=3.733,95%CI=1.300~10.720,P=0.014)。孕早期双胎妊娠胎儿双胎特有指标阳性的总检出率为27.27%(114/418),包括双胎CRL差异≥15%、双胎UCI差异阴性12例,双胎CRL差异<15%、双胎UCI差异阳性100例,双胎CRL差异≥15%、双胎UCI差异阳性2例。孕早期双胎妊娠胎儿超声软指标阴性但双胎特有指标阳性的总检出率为25.12%(105/418),超声软指标阴性但双胎特有指标阳性胎儿中不良妊娠结局与体质量阳性发生率为27.6%(29/105),单纯超声软指标阴性胎儿中不良妊娠结局发生率为16.4%(60/365);孕早期超声软指标阴性但双胎特有指标阳性胎儿不良妊娠结局与体质量阳性发生率高于单纯超声软指标阴性胎儿不良妊娠结局发生率(χ^(2)=6.641,P=0.010)。孕早期双胎妊娠胎儿超声软指标阳性合并双胎特有指标阳性的总检出率为2.15%(9/418),超声软指标阳性合并双胎特有指标阳性胎儿中不良妊娠结局并体质量阳性发生率为44.4%(4/9),单纯软指标阳性胎儿中不良妊娠结局发生率为30.2%(16/53),差异无统计学意义(χ^(2)=0.212,P=0.645)。多因素Logistic回归分析结果显示,NT增厚(OR=2.576,95%CI=1.146~5.791,P=0.022)、双胎CRL差异≥15%(OR=13.167,95%CI=3.595~48.229,P<0.001)、双胎UCI差异阳性(OR=2.369,95%CI=1.049~5.348,P=0.038)是孕早期DCDA双胎妊娠胎儿不良妊娠结局与体质量阳性的危险因素。结论NT增厚、双胎CRL差异≥15%、双胎UCI差异阳性可能是孕早期DCDA双胎妊娠胎儿不良妊娠结局与体质量阳性的危险因素。对于超声软指标阳性或双胎特有指标阳性的胎儿应提高警惕,需对其进行全面综合评估并密切随访。 展开更多
关键词 妊娠 双胎 妊娠结局 双绒毛膜双羊膜囊 超声软指标 双胎特有指标 孕早期 LOGISTIC模型
下载PDF
Deep reinforcement learning based active surge control for aeroengine compressors
5
作者 Xinglong ZHANG Zhonglin LIN +1 位作者 Runmin JI Tianhong ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期418-438,共21页
This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengin... This study proposes an active surge control method based on deep reinforcement learning to ensure the stability of compressors when adhering to the pressure rise command across the wide operating range of an aeroengine.Initially,the study establishes the compressor dynamic model with uncertainties,disturbances,and Close-Coupled Valve(CCV)actuator delay.Building upon this foundation,a Partially Observable Markov Decision Process(POMDP)is defined to facilitate active surge control.To address the issue of unobservability,a nonlinear state observer is designed using a finite-time high-order sliding mode.Furthermore,an Improved Soft Actor-Critic(ISAC)algorithm is developed,incorporating prioritized experience replay and adaptive temperature parameter techniques,to strike a balance between exploration and convergence during training.In addition,reasonable observation variables,error-segmented reward functions,and random initialization of model parameters are employed to enhance the robustness and generalization capability.Finally,to assess the effectiveness of the proposed method,numerical simulations are conducted,and it is compared with the fuzzy adaptive backstepping method and Second-Order Sliding Mode Control(SOSMC)method.The simulation results demonstrate that the deep reinforcement learning based controller outperforms other methods in both tracking accuracy and robustness.Consequently,the proposed active surge controller can effectively ensure stable operation of compressors in the high-pressure-ratio and high-efficiency region. 展开更多
关键词 Aeroengine surge Active surge control Moore-Greitzer model Deep reinforcement learning soft actor-critic Nonlinear observer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部