A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method ...A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method used to evaluate rockburst in hard coal seams is not applicable to soft coal seams. This paper established an energy integral model for the rockburst-inducing area and a friction work calculation model for the plastic area. If the remaining energy after the coal seam is broken in the rockburstinducing area is greater than the friction work required for the coal to burst out, then a rockburst accident will occur. Mechanisms of ‘‘quaking without bursting" and ‘‘quaking and bursting" are clarified for soft coal seams and corresponding control measures are proposed as the optimization of roadway layouts and use of ‘‘three strong systems"(strong de-stressing, strong supporting, and strong monitoring).展开更多
Grouting is an important method to reinforce soft coal roadway,and the presence of primary cracks in the coal body has an important influence on the grouting effect.With the discrete element simulation method,the grou...Grouting is an important method to reinforce soft coal roadway,and the presence of primary cracks in the coal body has an important influence on the grouting effect.With the discrete element simulation method,the grouting process of the soft coal seam was simulated.The mechanism of primary cracks on grouting was revealed,while the influence of fracture characteristics and grouting pressure on the grouting effect was analyzed.The results demonstrated that grouting in the soft coal seam involves the stages of seepage,rapid splitting,slow splitting,and stability.Due to the presence of primary cracks,the grouting diffusion radius increased significantly.Under the slurry pressure,the tensile stress concentration was formed at the crack tip,and the slurry split the coal once the splitting pressure was reached.In addition,the distribution characteristics of fractures are found to have a great influence on the grouting effect.It is observed that smaller fracture spacing is associated with a larger slurry diffusion radius and thus easier penetration of the primary crack tips.The fracture angle affects the direction of fracture propagation.The secondary fracture formed by splitting is a tensile fracture,which is more likely to extend along the direction parallel to the maximum principal stress.Overall,these simulation results have guiding significance for the setting of reasonable spacing of grouting holes in the practice of grouting engineering.展开更多
Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas con...Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.展开更多
The paper discussed a comprehensive numerical simulation and field work by the usage of waterjet slotting tech- nique to prevent the occurrence of outbursts in soft and outburst prone coal seams. This was based on the...The paper discussed a comprehensive numerical simulation and field work by the usage of waterjet slotting tech- nique to prevent the occurrence of outbursts in soft and outburst prone coal seams. This was based on the geological and ge- omechanical conditions of Jinjiachong Colliery, Guizhou Province, associated with varied waterjet slotting parameters such as slotting penetration, slotting thickness and slotting distance along the length of borehole. Also, to understand the variation of internal stress of coal seams after waterjet slotting application, the internal stress levels were compared with and without slot- ting application, and the results indicate that the internal effective stress levels can be reduced to 70% and 45% for the vertical and horizontal stresses, respectively, and the gas concentration can be increased up to 5 times when the waterjet slotting is ap- plied.展开更多
The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will th...The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”.展开更多
In order to study the hypotonic and rheological particularity of “three soft” coal seam in west Henan, China, this paper explored the stress and damage characteristics of crack in coal under condition of water injec...In order to study the hypotonic and rheological particularity of “three soft” coal seam in west Henan, China, this paper explored the stress and damage characteristics of crack in coal under condition of water injection fracturing based on ABAQUS platform;The cohesive element in T-P damage evolution criterion was used to describe the approximately linear relationship between crack width and extending distance in soft coal. The simulation results show that stress evolution and crack damage in soft coal is a gradually developing process under condition of water injection fracturing. When the static pressure is 4 - 10 MPa, and the injection time is about 1 - 2 hours, the damage range of crack in soft coal can basically reach an ideal data of 80 - 100 m, and then greatly improve the hypotonic performance of “three soft” coal seam.展开更多
基金Financial supports for this work by the National Program on Key Basic Research Project (No.210CB226800)the National Natural Science Foundation of China (Nos.51274022 and 51174016)
文摘A number of rockburst accidents occurring in soft coal seams have shown that the rockburst mechanism involved in soft coal seams is significantly different from that involved in hard coal seams. Therefore, the method used to evaluate rockburst in hard coal seams is not applicable to soft coal seams. This paper established an energy integral model for the rockburst-inducing area and a friction work calculation model for the plastic area. If the remaining energy after the coal seam is broken in the rockburstinducing area is greater than the friction work required for the coal to burst out, then a rockburst accident will occur. Mechanisms of ‘‘quaking without bursting" and ‘‘quaking and bursting" are clarified for soft coal seams and corresponding control measures are proposed as the optimization of roadway layouts and use of ‘‘three strong systems"(strong de-stressing, strong supporting, and strong monitoring).
基金The authors acknowledge the financial support provided by the National Natural Science Foundation of China(No.51604094 and 51674098)the Shandong Provincial Natural Science Foundation(No.ZR2020QE118).
文摘Grouting is an important method to reinforce soft coal roadway,and the presence of primary cracks in the coal body has an important influence on the grouting effect.With the discrete element simulation method,the grouting process of the soft coal seam was simulated.The mechanism of primary cracks on grouting was revealed,while the influence of fracture characteristics and grouting pressure on the grouting effect was analyzed.The results demonstrated that grouting in the soft coal seam involves the stages of seepage,rapid splitting,slow splitting,and stability.Due to the presence of primary cracks,the grouting diffusion radius increased significantly.Under the slurry pressure,the tensile stress concentration was formed at the crack tip,and the slurry split the coal once the splitting pressure was reached.In addition,the distribution characteristics of fractures are found to have a great influence on the grouting effect.It is observed that smaller fracture spacing is associated with a larger slurry diffusion radius and thus easier penetration of the primary crack tips.The fracture angle affects the direction of fracture propagation.The secondary fracture formed by splitting is a tensile fracture,which is more likely to extend along the direction parallel to the maximum principal stress.Overall,these simulation results have guiding significance for the setting of reasonable spacing of grouting holes in the practice of grouting engineering.
基金supported by the National Natural Science Foundation of China(52074013,52374179)China Huaneng Group Science and Technology Project(HNKJ20-H87)+1 种基金Natural Science Foundation of Anhui Province(2208085ME125)Hefei Comprehensive National Science Center(21KZS216),which are gratefully appreciated.
文摘Coalbed methane(CBM)is a significant factor in triggering coal and gas outburst disaster,while also serving as a clean fuel.With the increasing depth of mining operations,coal seams that exhibit high levels of gas content and low permeability have become increasingly prevalent.While controllable shockwave(CSW)technology has proven effective in enhancing CBM in laboratory settings,there is a lack of reports on its field applications in soft and low-permeability coal seams.This study establishes the governing equations for stress waves induced by CSW.Laplace numerical inversion was employed to analyse the dynamic response of the coal seam during CSW antireflection.Additionally,quantitative calculations were performed for the crushed zone,fracture zone,and effective CSW influence range,which guided the selection of field test parameters.The results of the field test unveiled a substantial improvement in the gas permeability coefficient,the average rate of pure methane flowrate,and the mean gas flowrate within a 10 m radius of the antireflection borehole.These enhancements were notable,showing increases of 3 times,13.72 times,and 11.48 times,respectively.Furthermore,the field test performed on the CSW antireflection gas extraction hole cluster demonstrated a noticeable improvement in CBM extraction.After antireflection,the maximum peak gas concentration and maximum peak pure methane flow reached 71.2%and 2.59 m^(3)/min,respectively.These findings will offer valuable guidance for the application of CSW antireflection technology in soft and low-permeability coal seams.
文摘The paper discussed a comprehensive numerical simulation and field work by the usage of waterjet slotting tech- nique to prevent the occurrence of outbursts in soft and outburst prone coal seams. This was based on the geological and ge- omechanical conditions of Jinjiachong Colliery, Guizhou Province, associated with varied waterjet slotting parameters such as slotting penetration, slotting thickness and slotting distance along the length of borehole. Also, to understand the variation of internal stress of coal seams after waterjet slotting application, the internal stress levels were compared with and without slot- ting application, and the results indicate that the internal effective stress levels can be reduced to 70% and 45% for the vertical and horizontal stresses, respectively, and the gas concentration can be increased up to 5 times when the waterjet slotting is ap- plied.
文摘The EGAT Mae Moh Mine is the largest open pit lignite mine in Thailand and it produces lignite about 16 million tons annually. In the near future, the pit limit of the mine will be reached and underground mine will then be developed through the open pit in the depth of 400 - 600 m from the surface. However, due to the challenges for underground mining such as poor geological conditions, extra thickness (20 - 30 m) of coal seams, and weak mechanical properties of coal seams and the surrounding rock, the success possibility of underground mining and an applicable underground mining method is being investigated at the present. The paper discusses the applicability of multi-slice bord-and-pillar method for the soft extra thick coal seams in the Mae Moh mine by means of numerical analyses using the 3D finite difference code “FLAC3D”.
文摘In order to study the hypotonic and rheological particularity of “three soft” coal seam in west Henan, China, this paper explored the stress and damage characteristics of crack in coal under condition of water injection fracturing based on ABAQUS platform;The cohesive element in T-P damage evolution criterion was used to describe the approximately linear relationship between crack width and extending distance in soft coal. The simulation results show that stress evolution and crack damage in soft coal is a gradually developing process under condition of water injection fracturing. When the static pressure is 4 - 10 MPa, and the injection time is about 1 - 2 hours, the damage range of crack in soft coal can basically reach an ideal data of 80 - 100 m, and then greatly improve the hypotonic performance of “three soft” coal seam.