Marine soft corals are known to produce a wide array of secondary metabolites,particularly diterpenoids and steroids,and often characterized by uncommon structural features and potent bioactivities.The remarkable abun...Marine soft corals are known to produce a wide array of secondary metabolites,particularly diterpenoids and steroids,and often characterized by uncommon structural features and potent bioactivities.The remarkable abundance and diversity of bioactive small molecule which have been isolated from soft corals have made these organisms an important source of new drug candidates for human diseases,particularly for their anti-inflammatory activity.In this paper,the authors reported anti-inflammatory marine natural products isolated from diverse species of soft corals determined in vitro by their inhibition of lipopolysaccharide-induced expression of inducible NO synthase and cyclooxygenase-2 in murine macrophage cells(RAW 264.7).展开更多
Dinoflagellates in the genus Symbiodinium, including nine clades(A–I), mainly form mutualistic symbioses with corals. More than 100 Symbiodinium molecular types have been identified by the ITS2-based genotype method ...Dinoflagellates in the genus Symbiodinium, including nine clades(A–I), mainly form mutualistic symbioses with corals. More than 100 Symbiodinium molecular types have been identified by the ITS2-based genotype method within any given clade, and specifically within Symbiodinium clade C. However, the genotype identification method using the ITS2 sequence is likely to lead to high diversity estimates due to the intra-genomic variations in the ITS2 space; thus, further validation is essential for a correct identification. In this study, the molecular diversity of Symbiodinium ITS2 sequences cloned from two stone corals, Acropora sp. SY-01 and Pocillopora sp. SY-05, and one soft coral, Sarcophyton sp. SY-07, living in the northern part of South China Sea(SCS), were analyzed and compared using the ITS2-based genotype identification method, coupled with ITS2-based secondary structural and phylogenetic analyses. As the result, 12 Symbiodinium ITS2 genotypes were identified, while only six and three Symbiodinium ITS2 genotypes were supported by ITS2-based secondary structural and phylogenetic analyses, respectively. In addition, no shared Symbiodinium ITS2 genotypes were observed among the three coral species, suggesting coral species-dependent Symbiodinium genotypes were within clade C. In summary, the present study provides a theoretical basis for validating the molecular diversity of Symbiodinium ITS2 genotypes in corals.展开更多
文摘Marine soft corals are known to produce a wide array of secondary metabolites,particularly diterpenoids and steroids,and often characterized by uncommon structural features and potent bioactivities.The remarkable abundance and diversity of bioactive small molecule which have been isolated from soft corals have made these organisms an important source of new drug candidates for human diseases,particularly for their anti-inflammatory activity.In this paper,the authors reported anti-inflammatory marine natural products isolated from diverse species of soft corals determined in vitro by their inhibition of lipopolysaccharide-induced expression of inducible NO synthase and cyclooxygenase-2 in murine macrophage cells(RAW 264.7).
基金supported by the Major National Scientific Research Project, China (No. 2013CB956103)the Minhang Leading Talent Project
文摘Dinoflagellates in the genus Symbiodinium, including nine clades(A–I), mainly form mutualistic symbioses with corals. More than 100 Symbiodinium molecular types have been identified by the ITS2-based genotype method within any given clade, and specifically within Symbiodinium clade C. However, the genotype identification method using the ITS2 sequence is likely to lead to high diversity estimates due to the intra-genomic variations in the ITS2 space; thus, further validation is essential for a correct identification. In this study, the molecular diversity of Symbiodinium ITS2 sequences cloned from two stone corals, Acropora sp. SY-01 and Pocillopora sp. SY-05, and one soft coral, Sarcophyton sp. SY-07, living in the northern part of South China Sea(SCS), were analyzed and compared using the ITS2-based genotype identification method, coupled with ITS2-based secondary structural and phylogenetic analyses. As the result, 12 Symbiodinium ITS2 genotypes were identified, while only six and three Symbiodinium ITS2 genotypes were supported by ITS2-based secondary structural and phylogenetic analyses, respectively. In addition, no shared Symbiodinium ITS2 genotypes were observed among the three coral species, suggesting coral species-dependent Symbiodinium genotypes were within clade C. In summary, the present study provides a theoretical basis for validating the molecular diversity of Symbiodinium ITS2 genotypes in corals.