In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shieldi...In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shielding structure is proposed.The soft magnetic material is designed to enhance the local magnetic field in the diode region.Moreover,the diode applies a shielding structure which can reduce the radial electric field.From simulation research,it is found that the emission and transmission quality of the electron beam with low magnetic field is greatly improved when loading this diode.Through simulation research,it is verified that the diode can increase the conversion efficiency of the transit-time oscillator(TTO)from 30%to 36.7%.In our experimental study,under the conditions of a diode voltage of 540 kV and a current of 10.5 kA,the output microwave power is 1.51 GW when loading the novel diode and the microwave frequency is 4.27 GHz when an external guiding magnetic field of 0.3 T is applied.The corresponding conversion efficiency is improved from 20.0%to 26.6%,which is 6.6%higher than that of a device loaded with a conventional diode.Our experiments have verified that this novel diode can effectively improve the conversion efficiency of high-power microwave sources operating with low magnetic field,and contribute to the miniaturization and compactness of high-power microwave devices.展开更多
The μi-T curves of the alloy Fe73.5Cu1 Nb3Si13.5B9 in the amorphous state and in the nanocrys-talline state have been investigated. For comparison, μi-T curves of the other two kinds of typical soft magnetic alloys ...The μi-T curves of the alloy Fe73.5Cu1 Nb3Si13.5B9 in the amorphous state and in the nanocrys-talline state have been investigated. For comparison, μi-T curves of the other two kinds of typical soft magnetic alloys also have been measured. It was found that a sharp Hopkinson peak appeared at the Curie point for each amorphous and crystalline alloy but there was no Hopkinson peak for the nanocrystalline alloy at the Curie point of the residual amorphous phase. This phenomenon has been explained in terms of the characteristic temperature dependence of the effective magnetic anisotropy.展开更多
We establish a theoretical bimodal model for the complex permeability of flaky soft magnetic composite materials to explain the variability of their initial permeability.The new model is motivated by finding the two n...We establish a theoretical bimodal model for the complex permeability of flaky soft magnetic composite materials to explain the variability of their initial permeability.The new model is motivated by finding the two natural resonance peaks to be inconsistent with the combination of the domain wall resonance and the natural resonance.In the derivation of the model,two relationships are explored:the first one is the relationship between the number of magnetic domains and the permeability,and the second one is the relationship between the natural resonance and the domain wall resonance.This reveals that the ball milling causes the number of magnetic domains to increase and the maximum initial permeability to exist after 10 h of ball milling.An experiment is conducted to demonstrate the reliability of the proposed model.The experimental results are in good agreement with the theoretical calculations.This new model is of great significance for studying the mechanism and applications of the resonance loss for soft magnetic composite materials in high frequency fields.展开更多
The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials ha...The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials have been successfully developed and used in a wide variety of applications. A brief review of R & D activities on amorphous soft magnetic materials in China is given from the beginning to the present in a somewhat chronological order, followed by a brief introduction to their applications on electric and electronic industries. An analysis and a prospect of Chinese market of such amorphous materials are also presented.展开更多
In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux densi...In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.展开更多
The complex interaction between material properties in an induction heating circuit was studied by multi physics simulation and by experimental verification in a full-scale laboratory heater. The work aims to illustra...The complex interaction between material properties in an induction heating circuit was studied by multi physics simulation and by experimental verification in a full-scale laboratory heater. The work aims to illustrate the complexity of the system of interacting materials, but also to propose a method to verify properties of soft magnetic composite materials in an integrated system and to identify which properties are the most critical under different circumstances and load cases. Heat losses at different loads were primarily studied, from DC currents to AC currents at 15, 20 and 25 kHz, respectively. A FE model for magnetic simulation was correlated with a corresponding model for heat simulation. The numerical model, as well as the established input material data, could be verified through the experimental measurements. In this particular study, the current loss in the litz wire was the dominant heat source, thus making the thermal conductivity of the SMC the most important property in this material.展开更多
FeCoN soft magnetic thin films are prepared by using the reactive direct-current magnetron sputtering technique. It is found that the addition of N2 can reduce the coercivity of the FeCoN film, and excellent soft magn...FeCoN soft magnetic thin films are prepared by using the reactive direct-current magnetron sputtering technique. It is found that the addition of N2 can reduce the coercivity of the FeCoN film, and excellent soft magnetic properties can be obtained when the ratio of N2 flow to total gas flow is 10%. The influences of texture, grain size, and stress on the magnetic properties and the high-frequency behaviors of the films are also discussed.展开更多
Nanocrystalline (Fe0.5 Co0.5 )86 Hf7 B6 Cu1 HITPERM alloy was investigated as the candidate of soft magnetic material for high temperature applications, compared with Fe86 Hf7B6 Cu1 NANOPERM alloy. Amorphous alloy rib...Nanocrystalline (Fe0.5 Co0.5 )86 Hf7 B6 Cu1 HITPERM alloy was investigated as the candidate of soft magnetic material for high temperature applications, compared with Fe86 Hf7B6 Cu1 NANOPERM alloy. Amorphous alloy ribbons were prepared by single-roller melt-spinning technology. Crystallization process of as-quenched ribbon was investigated using differential scanning calorimeter at different heating rates. The coercivity was determined from quasi-static hysteresis loop measured at room temperature using a computerized hysteresis loop tracer. X-ray diffraction with Cu Kα radiation was used to determine the structure. The vibrating sample magnetometer was usedto measure the magnetization as a function of temperature of the nanocrystllized alloys. That Co substitution for Fein alloy enhances the Curie temperature of amorphous alloy and the magnetization of nanocrystalline alloy at hightemperature. After annealing amorphous precursor, the optimum nanocrystalline alloy obtained shows the local minimum coercivity. The coercivity increases with the increasing annealing temperature corresponding to the formation of ferromagnetic phase in the secondary crystallization.展开更多
Fe-based metallic glasses(MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properti...Fe-based metallic glasses(MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe78Si9B13 glassy ribbon. The values of magnetic induction(or magnetic flux density) B and Hc coercivity c show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall,increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry.展开更多
Different Mo contents have been added into traditional Finemet alloy to form Fe 73.5 Cu 1Nb 3- x Mo x Si 13 B 9.5 ( x =0~3) alloys. The change in DC and AC magnetic properties with Mo for Nb substitution was investig...Different Mo contents have been added into traditional Finemet alloy to form Fe 73.5 Cu 1Nb 3- x Mo x Si 13 B 9.5 ( x =0~3) alloys. The change in DC and AC magnetic properties with Mo for Nb substitution was investigated. The results show that, with adding Mo, although the DC relative permeability decreases and the coercive force increases slightly, the saturation flux density B S can be increased, and the core loss of the alloy can be decreased. The AC permeability of samples contained Mo is higher than that of alloy without Mo content. Fe 73.5 Cu 1Nb 1Mo 2Si 13 B 9.5 alloy has the highest saturation flux density B S. Fe 73.5 Cu 1Nb 2Mo 1Si 13 B 9.5 alloy has the best frequency dependence on the AC permeability and core loss.展开更多
Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for hi...Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for high speed operation. However, because of its complex irregular structure, the manufacturing process using silicon sheets is complicated. Soft magnetic composite material(SMC) is manufactured by powder metallurgy technology, which can produce various shapes of stator core structures, so it is easier to produce various irregular shapes of the stator core. However, the raw SMC material is relatively expensive, and the mechanical strength of SMC is weak. In this paper, a PMCPM with hybrid cores is proposed. With the adoption of hybrid silicon sheet-SMC cores and amorphous alloy-SMC cores, the torque ability of PMCPM can be improved greatly and it can have higher efficiency for more wide operation frequency. Meanwhile, its mechanical strength has been improved and it can be designed for high torque direct drive applications as it is a modular machine. Furthermore, three methods are proposed to reduce the additional eddy current loss which resulted from the employment of hybrid cores in PMCPM.展开更多
Fe-Ni-Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma Fe Ni matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characterist...Fe-Ni-Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma Fe Ni matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characteristics and phase transformation of the combusted powder and the Fe-Ni-Y2O3 nanocomposites were characterized by XRD, FESEM and TEM.Porous Fe-Ni-Y2O3 nanocomposites with crystallite size below 100 nm were obtained after reduction. The morphology, phases and magnetic property of Fe-Ni-Y2O3 nanocomposites reduced at different temperatures were investigated. The Fe-Ni-Y2O3 nanocomposite reduced at 900 °C has the maximum saturation magnetization and the minimum coercivity values of 167.41 A/(m2·kg)and 3.11 k A/m, respectively.展开更多
Feo.eCoo.^seHfTBsCu! nanocrystalline alloy obtained in isothermal annealing process from amorphous precursor was investigated as candidate of soft magnetic materials for high temperature applications. Co substitution ...Feo.eCoo.^seHfTBsCu! nanocrystalline alloy obtained in isothermal annealing process from amorphous precursor was investigated as candidate of soft magnetic materials for high temperature applications. Co substitution for Fe can enhance the curie temperature of amorphous alloy (Tc = 630 °C) and improve the magnetization of nanocrystalline alloy at high temperature ( = 1.56T at 550 °C). After annealing amorphous precursor at 550 °C for 1 hour, the optimum nanocrystalline alloy can be obtained which shows the local minimum coercivity ( = 16 A/m). The coercivity increases with the increase of annealing temperature corresponding to the formation of ferromagnetic phase in the secondary crystallization. Furthermore, additions of Hf and B elements reduce the melting temperature of the alloy studied comparing with the Fe-Co binary alloy.展开更多
Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi ...Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi and fcc-FeNi and paramagnetic (Fe-Ni)23B6 phases were identified in the annealed samples. It was shown that in the external magnetic field the intensities of the 2nd and the 5th lines (A23 parameter) are the most sensitive M?ssbauer parameters. Rather small changes were observed in the values of internal magnetic field. Our results showed that the amorphous precursor is more sensitive to the influence of external magnetic field than the nanocrystalline alloy. All spectra of amorphous precursor showed the increase of A23 parameter and decrease of internal magnetic field values of about 1 T (±0.5 T) under influence of external magnetic field. In the case of nanocrystalline samples the tendency for the values of internal magnetic field is similar but the effect is not so pronounced. The measurements confirmed that even weak external magnetic field affected orientation of the net magnetic moments. Our results indicate that effect of the external magnetic field is stronger in the case of amorphous samples due to their disordered structure.展开更多
Abstract:Material properties play an important role in the performance of electromagnetic mechanism. For an aeronautic Hermetically-Sealed Electromagnetic Relay(HSER), more than 50%parts are made of soft magnetic mate...Abstract:Material properties play an important role in the performance of electromagnetic mechanism. For an aeronautic Hermetically-Sealed Electromagnetic Relay(HSER), more than 50%parts are made of soft magnetic materials. Therefore, the performance of soft magnetic materials directly determines the static and dynamic characteristics of the HSER. Based on the theory of crystal recrystallization, this paper analyzes cold extrusion and heat treatment in the processing of soft magnetic materials, simulates the grain change process of an armature at different heat treatment temperatures, establishes a correlation model of temperature, grain size, and magnetic energy,and verifies results by scanning electron microscopy. Results of heat treatment temperatures from 800 ℃to 920 ℃are obtained and compared. A sample soft magnetic material after heat treatment at different temperatures has the largest difference in the initial magnetization range, up to 22%. In order to verify the fluctuation of the overall output characteristics of an HSER caused by the difference between soft magnetic materials, a static and dynamic analysis model of a typical HSER is established, and the accuracy of the model is verified by a set of actual test system. The difference of dynamic characteristics under different heat treatment temperatures is nearly 3%.展开更多
A new method of depositing an insulating multifunctional oxide coating on metal particles was developed.Such coatings increase corrosion resistance and insulate metal particles from each other.On base of capsulated by...A new method of depositing an insulating multifunctional oxide coating on metal particles was developed.Such coatings increase corrosion resistance and insulate metal particles from each other.On base of capsulated by oxide coating water-atomized iron powder ASC100.29,new composite soft magnetic materials were synthesized,which are able of replacing electrical steel in devices.Structural,electromagnetic properties and corrosion characte-ristics of the obtained composites were studied.It was found that the synthesized composite materials have low elec-tromagnetic losses,high values of magnetic induction(up to 2.1 T)and good corrosion resistance.The results demon-strate that the use of such materials in power supplies,c hokes,transformers,stators and rotors of electric machines and other products ensures their stable operation under various conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61701516)
文摘In order to reduce the external magnetic field and improve the conversion efficiency of high-power microwave generation devices with low external magnetic field,a novel diode with an embedded soft magnetic and shielding structure is proposed.The soft magnetic material is designed to enhance the local magnetic field in the diode region.Moreover,the diode applies a shielding structure which can reduce the radial electric field.From simulation research,it is found that the emission and transmission quality of the electron beam with low magnetic field is greatly improved when loading this diode.Through simulation research,it is verified that the diode can increase the conversion efficiency of the transit-time oscillator(TTO)from 30%to 36.7%.In our experimental study,under the conditions of a diode voltage of 540 kV and a current of 10.5 kA,the output microwave power is 1.51 GW when loading the novel diode and the microwave frequency is 4.27 GHz when an external guiding magnetic field of 0.3 T is applied.The corresponding conversion efficiency is improved from 20.0%to 26.6%,which is 6.6%higher than that of a device loaded with a conventional diode.Our experiments have verified that this novel diode can effectively improve the conversion efficiency of high-power microwave sources operating with low magnetic field,and contribute to the miniaturization and compactness of high-power microwave devices.
基金National Natural Science Foundation of China! under grant No. 59871013.
文摘The μi-T curves of the alloy Fe73.5Cu1 Nb3Si13.5B9 in the amorphous state and in the nanocrys-talline state have been investigated. For comparison, μi-T curves of the other two kinds of typical soft magnetic alloys also have been measured. It was found that a sharp Hopkinson peak appeared at the Curie point for each amorphous and crystalline alloy but there was no Hopkinson peak for the nanocrystalline alloy at the Curie point of the residual amorphous phase. This phenomenon has been explained in terms of the characteristic temperature dependence of the effective magnetic anisotropy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11564024,51731001,and 11574122)the Fundamental Research Funds for the Central Universities,China(Grant No.lzujbky-2019-kb06).
文摘We establish a theoretical bimodal model for the complex permeability of flaky soft magnetic composite materials to explain the variability of their initial permeability.The new model is motivated by finding the two natural resonance peaks to be inconsistent with the combination of the domain wall resonance and the natural resonance.In the derivation of the model,two relationships are explored:the first one is the relationship between the number of magnetic domains and the permeability,and the second one is the relationship between the natural resonance and the domain wall resonance.This reveals that the ball milling causes the number of magnetic domains to increase and the maximum initial permeability to exist after 10 h of ball milling.An experiment is conducted to demonstrate the reliability of the proposed model.The experimental results are in good agreement with the theoretical calculations.This new model is of great significance for studying the mechanism and applications of the resonance loss for soft magnetic composite materials in high frequency fields.
文摘The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials have been successfully developed and used in a wide variety of applications. A brief review of R & D activities on amorphous soft magnetic materials in China is given from the beginning to the present in a somewhat chronological order, followed by a brief introduction to their applications on electric and electronic industries. An analysis and a prospect of Chinese market of such amorphous materials are also presented.
文摘In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.
文摘The complex interaction between material properties in an induction heating circuit was studied by multi physics simulation and by experimental verification in a full-scale laboratory heater. The work aims to illustrate the complexity of the system of interacting materials, but also to propose a method to verify properties of soft magnetic composite materials in an integrated system and to identify which properties are the most critical under different circumstances and load cases. Heat losses at different loads were primarily studied, from DC currents to AC currents at 15, 20 and 25 kHz, respectively. A FE model for magnetic simulation was correlated with a corresponding model for heat simulation. The numerical model, as well as the established input material data, could be verified through the experimental measurements. In this particular study, the current loss in the litz wire was the dominant heat source, thus making the thermal conductivity of the SMC the most important property in this material.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874060 and 60803035)
文摘FeCoN soft magnetic thin films are prepared by using the reactive direct-current magnetron sputtering technique. It is found that the addition of N2 can reduce the coercivity of the FeCoN film, and excellent soft magnetic properties can be obtained when the ratio of N2 flow to total gas flow is 10%. The influences of texture, grain size, and stress on the magnetic properties and the high-frequency behaviors of the films are also discussed.
基金Project supported by the 5th Framework Program of European Community project(G5RD-CT-2001-03009) supported by Soft Magnetic Nanomaterials for High Temperature and High Frequency Functional Application in Power Electronics project(50235030)supported by the National Natural Science Foundation of China
文摘Nanocrystalline (Fe0.5 Co0.5 )86 Hf7 B6 Cu1 HITPERM alloy was investigated as the candidate of soft magnetic material for high temperature applications, compared with Fe86 Hf7B6 Cu1 NANOPERM alloy. Amorphous alloy ribbons were prepared by single-roller melt-spinning technology. Crystallization process of as-quenched ribbon was investigated using differential scanning calorimeter at different heating rates. The coercivity was determined from quasi-static hysteresis loop measured at room temperature using a computerized hysteresis loop tracer. X-ray diffraction with Cu Kα radiation was used to determine the structure. The vibrating sample magnetometer was usedto measure the magnetization as a function of temperature of the nanocrystllized alloys. That Co substitution for Fein alloy enhances the Curie temperature of amorphous alloy and the magnetization of nanocrystalline alloy at hightemperature. After annealing amorphous precursor, the optimum nanocrystalline alloy obtained shows the local minimum coercivity. The coercivity increases with the increasing annealing temperature corresponding to the formation of ferromagnetic phase in the secondary crystallization.
基金supported by the National Key Research and Development Plan,China(Grant No.2016YFB0300501)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC017)+1 种基金the National Natural Science Foundation of China(Grant Nos.51571209,51461165101,and 51301194)the National Basic Research Program of China(Grant No.2015CB856800)
文摘Fe-based metallic glasses(MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe78Si9B13 glassy ribbon. The values of magnetic induction(or magnetic flux density) B and Hc coercivity c show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall,increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry.
文摘Different Mo contents have been added into traditional Finemet alloy to form Fe 73.5 Cu 1Nb 3- x Mo x Si 13 B 9.5 ( x =0~3) alloys. The change in DC and AC magnetic properties with Mo for Nb substitution was investigated. The results show that, with adding Mo, although the DC relative permeability decreases and the coercive force increases slightly, the saturation flux density B S can be increased, and the core loss of the alloy can be decreased. The AC permeability of samples contained Mo is higher than that of alloy without Mo content. Fe 73.5 Cu 1Nb 1Mo 2Si 13 B 9.5 alloy has the highest saturation flux density B S. Fe 73.5 Cu 1Nb 2Mo 1Si 13 B 9.5 alloy has the best frequency dependence on the AC permeability and core loss.
基金supported by the National Natural Science Foundation of China under project 52007047the Outstanding Youth Innovation Project funded by State Key Laboratory of Reliability and Intelligence of Electrical Equipment EERI_OY2021005。
文摘Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for high speed operation. However, because of its complex irregular structure, the manufacturing process using silicon sheets is complicated. Soft magnetic composite material(SMC) is manufactured by powder metallurgy technology, which can produce various shapes of stator core structures, so it is easier to produce various irregular shapes of the stator core. However, the raw SMC material is relatively expensive, and the mechanical strength of SMC is weak. In this paper, a PMCPM with hybrid cores is proposed. With the adoption of hybrid silicon sheet-SMC cores and amorphous alloy-SMC cores, the torque ability of PMCPM can be improved greatly and it can have higher efficiency for more wide operation frequency. Meanwhile, its mechanical strength has been improved and it can be designed for high torque direct drive applications as it is a modular machine. Furthermore, three methods are proposed to reduce the additional eddy current loss which resulted from the employment of hybrid cores in PMCPM.
基金Project(51104007)supported by the National Natural Science Foundation of ChinaProject(2132046)supported by Beijing Natural Science Foundation,China
文摘Fe-Ni-Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma Fe Ni matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characteristics and phase transformation of the combusted powder and the Fe-Ni-Y2O3 nanocomposites were characterized by XRD, FESEM and TEM.Porous Fe-Ni-Y2O3 nanocomposites with crystallite size below 100 nm were obtained after reduction. The morphology, phases and magnetic property of Fe-Ni-Y2O3 nanocomposites reduced at different temperatures were investigated. The Fe-Ni-Y2O3 nanocomposite reduced at 900 °C has the maximum saturation magnetization and the minimum coercivity values of 167.41 A/(m2·kg)and 3.11 k A/m, respectively.
基金supported by the 5^(th)framework Program of European Community,research project“Soft Magnetic.Nanomaterials for High Temperature and High Frequency Functional Application in Power Electronics",contract No.GSRD-CT-2001-03009.the key project of National Natural Science Foundation of China(50235030).
文摘Feo.eCoo.^seHfTBsCu! nanocrystalline alloy obtained in isothermal annealing process from amorphous precursor was investigated as candidate of soft magnetic materials for high temperature applications. Co substitution for Fe can enhance the curie temperature of amorphous alloy (Tc = 630 °C) and improve the magnetization of nanocrystalline alloy at high temperature ( = 1.56T at 550 °C). After annealing amorphous precursor at 550 °C for 1 hour, the optimum nanocrystalline alloy can be obtained which shows the local minimum coercivity ( = 16 A/m). The coercivity increases with the increase of annealing temperature corresponding to the formation of ferromagnetic phase in the secondary crystallization. Furthermore, additions of Hf and B elements reduce the melting temperature of the alloy studied comparing with the Fe-Co binary alloy.
文摘Amorphous and nanocrystalline (Fe1–xNix)81Nb7B12 (x = 0, 0.25, 0.5, 0.75) alloys were measured by M?ssbauer spectrometry in the weak external magnetic field of 0.5 T. From structural analyses, ferromagnetic bcc-FeNi and fcc-FeNi and paramagnetic (Fe-Ni)23B6 phases were identified in the annealed samples. It was shown that in the external magnetic field the intensities of the 2nd and the 5th lines (A23 parameter) are the most sensitive M?ssbauer parameters. Rather small changes were observed in the values of internal magnetic field. Our results showed that the amorphous precursor is more sensitive to the influence of external magnetic field than the nanocrystalline alloy. All spectra of amorphous precursor showed the increase of A23 parameter and decrease of internal magnetic field values of about 1 T (±0.5 T) under influence of external magnetic field. In the case of nanocrystalline samples the tendency for the values of internal magnetic field is similar but the effect is not so pronounced. The measurements confirmed that even weak external magnetic field affected orientation of the net magnetic moments. Our results indicate that effect of the external magnetic field is stronger in the case of amorphous samples due to their disordered structure.
基金supported by the National Natural Science Foundation of China(No.52177134)。
文摘Abstract:Material properties play an important role in the performance of electromagnetic mechanism. For an aeronautic Hermetically-Sealed Electromagnetic Relay(HSER), more than 50%parts are made of soft magnetic materials. Therefore, the performance of soft magnetic materials directly determines the static and dynamic characteristics of the HSER. Based on the theory of crystal recrystallization, this paper analyzes cold extrusion and heat treatment in the processing of soft magnetic materials, simulates the grain change process of an armature at different heat treatment temperatures, establishes a correlation model of temperature, grain size, and magnetic energy,and verifies results by scanning electron microscopy. Results of heat treatment temperatures from 800 ℃to 920 ℃are obtained and compared. A sample soft magnetic material after heat treatment at different temperatures has the largest difference in the initial magnetization range, up to 22%. In order to verify the fluctuation of the overall output characteristics of an HSER caused by the difference between soft magnetic materials, a static and dynamic analysis model of a typical HSER is established, and the accuracy of the model is verified by a set of actual test system. The difference of dynamic characteristics under different heat treatment temperatures is nearly 3%.
基金Supported by the Joint Projects of the Belarusian Republican Foundation for Basic Research and Romanian Academy(BRFBR-RA)(Nos.T19UZBG-004/2019,T20RA-004/2020).
文摘A new method of depositing an insulating multifunctional oxide coating on metal particles was developed.Such coatings increase corrosion resistance and insulate metal particles from each other.On base of capsulated by oxide coating water-atomized iron powder ASC100.29,new composite soft magnetic materials were synthesized,which are able of replacing electrical steel in devices.Structural,electromagnetic properties and corrosion characte-ristics of the obtained composites were studied.It was found that the synthesized composite materials have low elec-tromagnetic losses,high values of magnetic induction(up to 2.1 T)and good corrosion resistance.The results demon-strate that the use of such materials in power supplies,c hokes,transformers,stators and rotors of electric machines and other products ensures their stable operation under various conditions.