A single layer of CoFeB and a multilayer of CoFeB MgO films are prepared by means of DC/RF magnetron sputter deposition. The excellent microwave properties and high electrical resistivity are simultaneously achieved i...A single layer of CoFeB and a multilayer of CoFeB MgO films are prepared by means of DC/RF magnetron sputter deposition. The excellent microwave properties and high electrical resistivity are simultaneously achieved in the discontinuous multilayer structure of [Co44Fe44B12(0.7nm)/MgO(0.4nm)]40 film. This film has a high permeability (μ′) (larger than 100 below 2.1 GHz), a high magnetic loss (μ″) (larger than 100 in a range from 1.5 to 3.3GHz), a resistivity of 3.3 × 10^3μΩ. cm, a saturation magnetization of 1.2 T, and an in-plane uniaxial anisotropy field of 5.5 kA/m. The microstructure and the surface topography of the film are also analysed. The relatively large surface roughness for the discontinuous film is responsible for the wide frequency band of magnetic loss. The magnetic loss and the high resistivity indicate that the discontinuous CoFeB MgO multilayer film has potential applications in microwave absorbers and electromagnetic interference (EMI) shielding materials in a GHz frequency range.展开更多
The c-axis oriented hcp-Co_(81)Ir_(19)magnetic films were prepared on different seed layers(Ni,Cu,Ir,Pt,Au,and No seed).We systematically investigated the impact that surface-free energy and strain energy have on the ...The c-axis oriented hcp-Co_(81)Ir_(19)magnetic films were prepared on different seed layers(Ni,Cu,Ir,Pt,Au,and No seed).We systematically investigated the impact that surface-free energy and strain energy have on the orientation and defects and/or internal stress of the grains by increasing the lattice mismatch ratio.Moreover,the initial permeability and the natural resonance frequency were discussed in great detail using a comparison between calculated values and experimental values.We found that the almost unchanged 4πM_(s) andμ_(i) are not affected,while the changed H_(c),intrinsic K_(grain),and f_(r) are strongly dependent on the seed layer and seed layer material.Moreover,the extracted damping constant is sensitive to the defects and/or internal stress and orientation of the grains.Therefore,the soft magnetic properties and microwave properties are adjusted and optimized by seed layers with different materials.展开更多
200 nm thick Fe-N magnetic thin films were deposited on glass substrates by RF sputtering. The as-deposited films have high saturation magnetization but their coercivity is also higher than what is needed Therefore it...200 nm thick Fe-N magnetic thin films were deposited on glass substrates by RF sputtering. The as-deposited films have high saturation magnetization but their coercivity is also higher than what is needed Therefore it is very important to reduce coercivity. The samples were vacuum annealed at 250℃ under 12000 A/m magnetic field. When the N content was in the range of 5-7 at. pct, the thin films consisted of α' +α' after heat treatment and had excellent soft magnetic properties of 4πMs=2.4 T, HC <80 A/m. However, the thickness of a recording head was 2μm, and Hc increased as thickness increased. In order to reduce the Hc, the sputtering power was raised from 200 W to 1000 W to reduce the grain size. 2μm Fe-N thin films were vacuum annealed under the same condition, when the N content was in the range of 5.9-8.5 at. pct, the thin films kept its excellent magnetic properties of 4πMs=2.2 T, HC <80 A/m. The properties of the films meet the need of a recording head material used in the dual-element GMR/inductive heads.展开更多
We present detailed investigations of structural and static/dynamic magnetic properties of hydrogenated hcp-Co_(80)^(57)Fe_(4)Ir_(16) soft magnetic thin films.Two different kinds of defects,i.e.,destructive and non-de...We present detailed investigations of structural and static/dynamic magnetic properties of hydrogenated hcp-Co_(80)^(57)Fe_(4)Ir_(16) soft magnetic thin films.Two different kinds of defects,i.e.,destructive and non-destructive,were demonstrated by controlling the negative bias voltage of the hydrogenation process.Our results show that the structure and magnetic properties of our sample can be tuned by the density of the induced defects.These results provide better understanding of the hydrogenation effect and thus can be used in the future for materials processing to meet the requirements of different devices.展开更多
The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter o...The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter of about 30~90 nm are formed and the partial nanocrystallization of the films is realized. As a result, the soft magnetic properties of the Co-based nanocrystalline thin films are improved greatly after RRTA: their resistivity is a quarter decreased; the average initial permeability is enhanced from 3 500 to over 5 000; the impedance is increased form 20 ~100 ?(at 1.4 GHz); the resonance peak is moved about 200 MHz down to low frequency. The evident improvement enables the Co-based nanocrystalline thin films to be used over a much wide frequency range of 1 KHz ~1.5 GHz.展开更多
FeGa thin film has been deposited on(100)-oriented GaAs and(001)-oriented Si substrates with different film thicknesses and laser energy densities at room temperature by pulsed laser deposition system.Materials st...FeGa thin film has been deposited on(100)-oriented GaAs and(001)-oriented Si substrates with different film thicknesses and laser energy densities at room temperature by pulsed laser deposition system.Materials structure and static magnetic of FeGa film have great changes depending on the substrate and energy density of pulsed laser.X-ray diffraction reveals the presence of first-order order–disorder structure ofgrain phase and disordered bcc A2 structure on GaAs substrate.The coercivity and remanence of FeGa film on GaAs substrate ratio show a regular dependence on the thickness and energy densities.However,film on Si substrate did not exhibit structure change,which can be attributed to a large lattice mismatch between FeGa and Si.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos 50371029 and 50771047)the Program for the New Century Excellent Talents in University of the Ministry of Education,China(Grant No NCET20420702)the Natural Science Foundation for the Distinguished Scholars of Hubei Province,China(Grant No 2005ABB002)
文摘A single layer of CoFeB and a multilayer of CoFeB MgO films are prepared by means of DC/RF magnetron sputter deposition. The excellent microwave properties and high electrical resistivity are simultaneously achieved in the discontinuous multilayer structure of [Co44Fe44B12(0.7nm)/MgO(0.4nm)]40 film. This film has a high permeability (μ′) (larger than 100 below 2.1 GHz), a high magnetic loss (μ″) (larger than 100 in a range from 1.5 to 3.3GHz), a resistivity of 3.3 × 10^3μΩ. cm, a saturation magnetization of 1.2 T, and an in-plane uniaxial anisotropy field of 5.5 kA/m. The microstructure and the surface topography of the film are also analysed. The relatively large surface roughness for the discontinuous film is responsible for the wide frequency band of magnetic loss. The magnetic loss and the high resistivity indicate that the discontinuous CoFeB MgO multilayer film has potential applications in microwave absorbers and electromagnetic interference (EMI) shielding materials in a GHz frequency range.
基金Project supported by the Natural Science Foundation of Ningxia in China (Grant No.2022AAC03288)the Ningxia New Solid Electronic Materials and Devices Research and Development Innovation Team (Grant No.2020CXTDLX12)。
文摘The c-axis oriented hcp-Co_(81)Ir_(19)magnetic films were prepared on different seed layers(Ni,Cu,Ir,Pt,Au,and No seed).We systematically investigated the impact that surface-free energy and strain energy have on the orientation and defects and/or internal stress of the grains by increasing the lattice mismatch ratio.Moreover,the initial permeability and the natural resonance frequency were discussed in great detail using a comparison between calculated values and experimental values.We found that the almost unchanged 4πM_(s) andμ_(i) are not affected,while the changed H_(c),intrinsic K_(grain),and f_(r) are strongly dependent on the seed layer and seed layer material.Moreover,the extracted damping constant is sensitive to the defects and/or internal stress and orientation of the grains.Therefore,the soft magnetic properties and microwave properties are adjusted and optimized by seed layers with different materials.
基金supported by the National Natural Science Foundation of China under grant No.19890310
文摘200 nm thick Fe-N magnetic thin films were deposited on glass substrates by RF sputtering. The as-deposited films have high saturation magnetization but their coercivity is also higher than what is needed Therefore it is very important to reduce coercivity. The samples were vacuum annealed at 250℃ under 12000 A/m magnetic field. When the N content was in the range of 5-7 at. pct, the thin films consisted of α' +α' after heat treatment and had excellent soft magnetic properties of 4πMs=2.4 T, HC <80 A/m. However, the thickness of a recording head was 2μm, and Hc increased as thickness increased. In order to reduce the Hc, the sputtering power was raised from 200 W to 1000 W to reduce the grain size. 2μm Fe-N thin films were vacuum annealed under the same condition, when the N content was in the range of 5.9-8.5 at. pct, the thin films kept its excellent magnetic properties of 4πMs=2.2 T, HC <80 A/m. The properties of the films meet the need of a recording head material used in the dual-element GMR/inductive heads.
基金the National Natural Science Foundation of China(Grant Nos.11704167,11704317,and 11574122).
文摘We present detailed investigations of structural and static/dynamic magnetic properties of hydrogenated hcp-Co_(80)^(57)Fe_(4)Ir_(16) soft magnetic thin films.Two different kinds of defects,i.e.,destructive and non-destructive,were demonstrated by controlling the negative bias voltage of the hydrogenation process.Our results show that the structure and magnetic properties of our sample can be tuned by the density of the induced defects.These results provide better understanding of the hydrogenation effect and thus can be used in the future for materials processing to meet the requirements of different devices.
文摘The rapid recurrent thermal annealing (RRTA) method has been used to amorphous Co-Nb-Zr soft magnetic thin films fabricated by DC sputtering. By using this method, in this paper, the crystalline grains with diameter of about 30~90 nm are formed and the partial nanocrystallization of the films is realized. As a result, the soft magnetic properties of the Co-based nanocrystalline thin films are improved greatly after RRTA: their resistivity is a quarter decreased; the average initial permeability is enhanced from 3 500 to over 5 000; the impedance is increased form 20 ~100 ?(at 1.4 GHz); the resonance peak is moved about 200 MHz down to low frequency. The evident improvement enables the Co-based nanocrystalline thin films to be used over a much wide frequency range of 1 KHz ~1.5 GHz.
基金financially supported by the National Youth Natural Science Foundation (nos. 61601293 and 61404085)the Yangfan Plan of Shanghai Youth Science and Technology Talents (no. 15YF408800)the National Natural Science Foundation of China (nos. 11574214, 61376010)
文摘FeGa thin film has been deposited on(100)-oriented GaAs and(001)-oriented Si substrates with different film thicknesses and laser energy densities at room temperature by pulsed laser deposition system.Materials structure and static magnetic of FeGa film have great changes depending on the substrate and energy density of pulsed laser.X-ray diffraction reveals the presence of first-order order–disorder structure ofgrain phase and disordered bcc A2 structure on GaAs substrate.The coercivity and remanence of FeGa film on GaAs substrate ratio show a regular dependence on the thickness and energy densities.However,film on Si substrate did not exhibit structure change,which can be attributed to a large lattice mismatch between FeGa and Si.