期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Soft Robotics:Morphology and Morphology-inspired Motion Strategy 被引量:5
1
作者 Fan Xu Hesheng Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第9期1500-1522,共23页
Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation ... Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance. 展开更多
关键词 soft continuum manipulator soft gripper soft mobile robot soft robot control method soft robot modeling method soft robotics
下载PDF
Pneumatically Actuated Soft Robotic Arm for Adaptable Grasping 被引量:9
2
作者 Zhe Chen Xueya Liang +3 位作者 Tonghao Wu Tenghao Yin Yuhai Xiang Shaoxing Qu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第5期608-622,共15页
Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the... Developing robotic manipulators capable of performing effective physical interac- tion tasks is a challenging topic. In this study, we design a soft robotic arm (SRA) with multiple degrees of freedom inspired by the flexible structures and the unique motion mechanism of the octopus arm. The SRA is fabricated with elastomeric materials, which consists of four series of integrated pneumatic chambers that play similar roles as the muscles in the octopus arm can achieve large bending in various directions with variable stiffness. This SRA displays specified movements via controlling pressure and selecting channels. Moreover, utilizing parallel control, the SRA demonstrates complicated three-dimensional motions. The force response and motion of the SRA are determined both experimentally and computationally. The applications of the present SRA include tightly coiling around the objects because of its large bending deformation (nearly 360°), grasping multiple objects, and adjusting the grabbing mode in accordance with the shape of objects. 展开更多
关键词 soft robotic arm Elastomeric materials soft manipulation Variable stiffness actuation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部