期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
1
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
下载PDF
A novel deep learning framework with variational auto-encoder for indoor air quality prediction
2
作者 Qiyue Wu Yun Geng +3 位作者 Xinyuan Wang Dongsheng Wang ChangKyoo Yoo Hongbin Liu 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第1期97-109,共13页
Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and ... Exposure to poor indoor air conditions poses significant risks to human health, increasing morbidity and mortality rates. Soft measurement modeling is suitable for stable and accurate monitoring of air pollutants and improving air quality. Based on partial least squares (PLS), we propose an indoor air quality prediction model that utilizes variational auto-encoder regression (VAER) algorithm. To reduce the negative effects of noise, latent variables in the original data are extracted by PLS in the first step. Then, the extracted variables are used as inputs to VAER, which improve the accuracy and robustness of the model. Through comparative analysis with traditional methods, we demonstrate the superior performance of our PLS-VAER model, which exhibits improved prediction performance and stability. The root mean square error (RMSE) of PLS-VAER is reduced by 14.71%, 26.47%, and 12.50% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. Additionally, the coefficient of determination (R2) of PLS-VAER improves by 13.70%, 30.09%, and 11.25% compared to single VAER, PLS-SVR, and PLS-ANN, respectively. This research offers an innovative and environmentally-friendly approach to monitor and improve indoor air quality. 展开更多
关键词 Indoor air quality PM_(2.5)concentration Variational auto-encoder Latent variable soft measurement modeling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部