Coupling the quasi 3D numerical simulation of electromagnetic field and the experiments with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft con...Coupling the quasi 3D numerical simulation of electromagnetic field and the experiments with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft contacted mould, especially the influences of power frequency, the mould structure, and the inductor position, size and current on the electromagnetic force and pressure on the billet, were analyzed. The result shows that, in continuous casting with soft contacted mould, the electromagnetic pressure on the surface of billet increases with the rising of the power frequency as a logarithmically parabolic function and, with that of inductor current as a parabolic function. The design principle of the soft contacted mould is that 1) the mould structure should be ‘more segments and thin slits’; 2) the topside of inductor should be at the same location with the meniscus of molten metal; 3) the inductor should cover the initial solidifying shell of billet.展开更多
In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the elec...In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.展开更多
Coupling the quasi 3D numerical simulation of the electromagnetic field and the experiments with some metals, a series of phenomena in the processes of continuous casting with soft contacted mould was analyzed. Some t...Coupling the quasi 3D numerical simulation of the electromagnetic field and the experiments with some metals, a series of phenomena in the processes of continuous casting with soft contacted mould was analyzed. Some theoretical and experimental models were presented, from which following results were obtained. 1) The electromagnetic force is related with electric conductivity of billet as a power function to 0.4. 2) The heat transfer between billet and mould is related with the contacting pressure, and it is a linear function for tin billet approximately. 3) The distance between initial solidification point and meniscus in billet is related with the surface magnetic flux density as a fourth root function. 4) The temperature gradient in the initial solidifying shell is reduced, which can decrease the tendency of hot tearing on the surface of billet, and increase the equiaxed crystal zone in billet. 5) The stronger the magnetic flux density is, the more shallow and the thinner the oscillation mark on the surface of billet is. 6) The depth of oscillation mark on the billet cast by the soft contacted mould can be reduced to about 10% in comparison with that on the billets cast by traditional mould. 7) In non dimensional condition, the average depth of the oscillation marks on the billets cast by the soft contacted mould decreases with increasing magnetic flux density on there as a complementary error function. [展开更多
在介绍SERCOS技术的基础上,阐述用软PLC和SERCOS总线开发全电子注塑机控制系统的方法,并分析了实现注塑过程的高速、高精度运动控制的硬件和软件结构及人机界面的设计。实际应用中,当该系统扫描时间为3 m s时,最大注射量达到80 cm3的制...在介绍SERCOS技术的基础上,阐述用软PLC和SERCOS总线开发全电子注塑机控制系统的方法,并分析了实现注塑过程的高速、高精度运动控制的硬件和软件结构及人机界面的设计。实际应用中,当该系统扫描时间为3 m s时,最大注射量达到80 cm3的制品其成型周期能够控制在10 s以内,且精度符合要求,从而为全电子注塑机的控制系统设计提供了一个可行的方案。展开更多
文摘Coupling the quasi 3D numerical simulation of electromagnetic field and the experiments with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft contacted mould, especially the influences of power frequency, the mould structure, and the inductor position, size and current on the electromagnetic force and pressure on the billet, were analyzed. The result shows that, in continuous casting with soft contacted mould, the electromagnetic pressure on the surface of billet increases with the rising of the power frequency as a logarithmically parabolic function and, with that of inductor current as a parabolic function. The design principle of the soft contacted mould is that 1) the mould structure should be ‘more segments and thin slits’; 2) the topside of inductor should be at the same location with the meniscus of molten metal; 3) the inductor should cover the initial solidifying shell of billet.
文摘In this paper, coupling the quasi-3D numerical simulation of electromagnetic field and the experiments of continuous casting with soft-contacted mould with some metals such as tin, aluminum, copper and steel, the electromagnetic characteristics of continuous casting with soft-contacted mould is analyzed. It is shown that the electromagnetic pressure on the surface of billet is increasing with the rising of power frequency as a logarithmically parabolic function, with that of electric conductivity of billet as a power junction, and with that of the current in inductor as a parabolic junction.
文摘Coupling the quasi 3D numerical simulation of the electromagnetic field and the experiments with some metals, a series of phenomena in the processes of continuous casting with soft contacted mould was analyzed. Some theoretical and experimental models were presented, from which following results were obtained. 1) The electromagnetic force is related with electric conductivity of billet as a power function to 0.4. 2) The heat transfer between billet and mould is related with the contacting pressure, and it is a linear function for tin billet approximately. 3) The distance between initial solidification point and meniscus in billet is related with the surface magnetic flux density as a fourth root function. 4) The temperature gradient in the initial solidifying shell is reduced, which can decrease the tendency of hot tearing on the surface of billet, and increase the equiaxed crystal zone in billet. 5) The stronger the magnetic flux density is, the more shallow and the thinner the oscillation mark on the surface of billet is. 6) The depth of oscillation mark on the billet cast by the soft contacted mould can be reduced to about 10% in comparison with that on the billets cast by traditional mould. 7) In non dimensional condition, the average depth of the oscillation marks on the billets cast by the soft contacted mould decreases with increasing magnetic flux density on there as a complementary error function. [
文摘在介绍SERCOS技术的基础上,阐述用软PLC和SERCOS总线开发全电子注塑机控制系统的方法,并分析了实现注塑过程的高速、高精度运动控制的硬件和软件结构及人机界面的设计。实际应用中,当该系统扫描时间为3 m s时,最大注射量达到80 cm3的制品其成型周期能够控制在10 s以内,且精度符合要求,从而为全电子注塑机的控制系统设计提供了一个可行的方案。