期刊文献+
共找到620篇文章
< 1 2 31 >
每页显示 20 50 100
Research on fiber optic gyro signal de-noising based on wavelet packet soft-threshold 被引量:7
1
作者 Qian Huaming & Ma Jichen Coll.of Automation,Harbin Engineering Univ.,Harbin 150001,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期607-612,共6页
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ... Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h. 展开更多
关键词 wavelet transform DRIFT fiber optic gyro soft-threshold signal de-noising
下载PDF
Vehicle Abnormal Behavior Detection Based on Dense Block and Soft Thresholding
2
作者 Yuanyao Lu Wei Chen +2 位作者 Zhanhe Yu Jingxuan Wang Chaochao Yang 《Computers, Materials & Continua》 SCIE EI 2024年第6期5051-5066,共16页
With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall... With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models. 展开更多
关键词 Vehicle abnormal behavior deep learning ResNet dense block soft thresholding
下载PDF
Application of S-transform threshold filtering in Anhui experiment airgun sounding data de-noising 被引量:1
3
作者 Chenglong Zheng Xiaofeng Tian +2 位作者 Zhuoxin Yang Shuaijun Wang Zhenyu Fan 《Geodesy and Geodynamics》 2018年第4期320-327,共8页
As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following charac... As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following characteristics: its time-frequency resolution corresponding to the signal frequency, reversible inverse transform, basic wavelet that does not have to meet the permit conditions. We combined the threshold method, proposed the S-transform threshold filtering on the basis of S transform timefrequency filtering, and processed airgun seismic records from temporary stations in "Yangtze Program"(the Anhui experiment). Compared with the results of the bandpass filtering, the S transform threshold filtering can improve the signal to noise ratio(SNR) of seismic waves and provide effective help for first arrival pickup and accurate travel time. The first arrival wave seismic phase can be traced farther continuously, and the Pm seismic phase in the subsequent zone is also highlighted. 展开更多
关键词 S transform Time-frequency filtering Airgun data threshold filtering de-noising
下载PDF
Reduction of ultrasonic echo noise based on improved wavelet threshold de-noising algorithm for friction welding
4
作者 尹欣 张臻 王旻 《China Welding》 EI CAS 2010年第3期61-65,共5页
In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on... In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on the multi-resolution analysis wavelet threshold de-noising method which was put forward by Donoho and Johnstone, and applied this method in the de-noising of the defective signals. This threshold function overcomes the discontinuous shortcoming of the hard-threshold function and the disadvantage of soft threshold function which causes an invariable deviation between the estimated wavelet coeffwients and the decomposed wavelet coefficients. The improved threshold function is of simple expression and convenient for calculation. The actual test results of defect noise signal show that this improved method can get less mean square error ( MSE ) and higher signal-to-noise ratio of reconstructed signals than those calculated from hard threshold and soft threshold methods. The improved threshold function has excellent de-noising effect. 展开更多
关键词 wavelet threshold friction welding de-noising improved algorithm
下载PDF
PROJECTED GRADIENT DESCENT BASED ON SOFT THRESHOLDING IN MATRIX COMPLETION 被引量:1
5
作者 Zhao Yujuan Zheng Baoyu Chen Shouning 《Journal of Electronics(China)》 2013年第6期517-524,共8页
Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermin... Matrix completion is the extension of compressed sensing.In compressed sensing,we solve the underdetermined equations using sparsity prior of the unknown signals.However,in matrix completion,we solve the underdetermined equations based on sparsity prior in singular values set of the unknown matrix,which also calls low-rank prior of the unknown matrix.This paper firstly introduces basic concept of matrix completion,analyses the matrix suitably used in matrix completion,and shows that such matrix should satisfy two conditions:low rank and incoherence property.Then the paper provides three reconstruction algorithms commonly used in matrix completion:singular value thresholding algorithm,singular value projection,and atomic decomposition for minimum rank approximation,puts forward their shortcoming to know the rank of original matrix.The Projected Gradient Descent based on Soft Thresholding(STPGD),proposed in this paper predicts the rank of unknown matrix using soft thresholding,and iteratives based on projected gradient descent,thus it could estimate the rank of unknown matrix exactly with low computational complexity,this is verified by numerical experiments.We also analyze the convergence and computational complexity of the STPGD algorithm,point out this algorithm is guaranteed to converge,and analyse the number of iterations needed to reach reconstruction error.Compared the computational complexity of the STPGD algorithm to other algorithms,we draw the conclusion that the STPGD algorithm not only reduces the computational complexity,but also improves the precision of the reconstruction solution. 展开更多
关键词 Matrix Completion (MC) Compressed Sensing (CS) Iterative thresholding algorithm Projected Gradient Descent based on soft thresholding (STPGD)
下载PDF
Implementation of GPR Signals De-Noising Based on DSP
6
作者 CHEN Xiao-li TIAN Mao ZHOU Hui-lin 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第6期1005-1008,共4页
An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single process... An important issue of ground-penetrating radar (GPR) signals analysis is de-noising thai is the guarantee of acquiring good detecting effect. The paper illustrates a successful application of digital single processor (DSP) based on wavelet shrinkage algorithm. In order to realize real-time GPP, signals analysis, some key issues are discussed such as the realization of fast wavelet transformation, the selection of CPU chip and the optimization of data movement. Experimenial results show that the DSP based application not only basically meets the real-time requirement of GPP, signals analysis, but also assures the quality of the GPR signals analysis. 展开更多
关键词 wavelet shrinkage de-noising GPR digital signal processor real time soft thresholding SNR
下载PDF
Parameter Estimation of Multiple Frequency-Hopping Signals Based on Space-Time-Frequency Analysis by Atomic Norm Soft Thresholding with Missing Observations
7
作者 Hongbin Wang Bangning Zhang +2 位作者 Heng Wang Binbin Wu Daoxing Guo 《China Communications》 SCIE CSCD 2022年第7期135-151,共17页
In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a u... In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a uniform linear array(ULA).We exploit the inherent incomplete data processing capability of atomic norm soft thresholding(AST)to analyze the space-time matrix and complete the accurate estimation of the hopping time and frequency of the received FH signals.The hopping time is obtained by the sudden changes of the spatial information,which is implemented as the boundary to divide the time domain signal so that each segment of the signal is a superposition of time-invariant multiple components.Then,the frequency of multiple signal components can be estimated precisely by AST within each segment.After obtaining the above two parameters of the hopping time and the frequency of signals,the direction of arrival(DOA)can be directly calculated by them,and the network sorting can be realized.Results of simulation show that the proposed method is superior to the existing technology.Even when a large portion of data observations is missing,as the number of array elements increases,the proposed method still achieves acceptable accuracy of multi-FH signal parameters estimation. 展开更多
关键词 frequency hopping parameter estimation missing observations atomic norm soft thresholding uniform linear array
下载PDF
A real-time 5/3 lifting wavelet HD-video de-noising system based on FPGA
8
作者 黄巧洁 Liu Jiancheng 《High Technology Letters》 EI CAS 2017年第2期212-220,共9页
In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field... In accordance with the application requirements of high definition(HD) video surveillance systems,a real-time 5/3 lifting wavelet HD-video de-noising system is proposed with frame rate conversion(FRC) based on a field-programmable gate array(FPGA),which uses a 3-level pipeline paralleled 5/3 lifting wavelet transformation and reconstruction structure,as well as a fast BayesS hrink adaptive threshold filtering module.The proposed system demonstrates de-noising performance,while also balancing system resources and achieving real-time processing.The experiments show that the proposed system's maximum operating frequency(through logic synthesis and layout using Quartus 13.1 software) can reach 178 MHz,based on the Altera Company's Stratix III EP3SE80 series FPGA.The proposed system can also satisfy real-time de-noising requirements of 1920 × 1080 at60 fps HD-video sources,while also significantly improving the peak signal to noise rate of the denoising images.Compared with similar systems,the system has the advantages of high operating frequency,and the ability to support multiple source formats for real-time processing. 展开更多
关键词 video surveillance threshold filtering discrete wavelet transformation DWT) field-programmable gate array (FPGA) de-noising
下载PDF
De-noising with Novel DWT-MFCC for Speaker Recognition
9
作者 Zhengquan Qiu Junxun Yin 《通讯和计算机(中英文版)》 2006年第7期54-57,共4页
关键词 计算机软件 数据库系统 计算机技术 软件开发
下载PDF
A Model-Based Soft Decision Approach for Speech Enhancement
10
作者 Xianyun Wang Changchun Bao Feng Bao 《China Communications》 SCIE CSCD 2017年第9期11-22,共12页
Many speech enhancement algorithms that deal with noise reduction are based on a binary masking decision(termed as the hard decision), which may cause some regions of the synthesized speech to be discarded. In view of... Many speech enhancement algorithms that deal with noise reduction are based on a binary masking decision(termed as the hard decision), which may cause some regions of the synthesized speech to be discarded. In view of the problem, a soft decision is often used as an optimal technique for speech restoration. In this paper, considering a new fashion of speech and noise models, we present two model-based soft decision techniques. One technique estimates a ratio mask generated by the exact Bayesian estimators of speech and noise. For the second technique, we consider one issue that an optimum local criterion(LC) for a certain SNR may not be appropriate for other SNRs. So we estimate a probabilistic mask with a variable LC. Experimental results show that the proposed method achieves a better performance than reference methods in speech quality. 展开更多
关键词 SPEECH ENHANCEMENT soft masks CASA threshold
下载PDF
Soft Handover Probability Determination Considering New Direction of Motion
11
作者 Basant Kumar Anand Mohan Shashwat Pathak 《Communications and Network》 2013年第2期178-183,共6页
This paper presents prior determination of soft handover probability considering new direction of motion of mobile station (MS) coinciding with gravitation point of cells. Our simulation results for 3-cell scenario an... This paper presents prior determination of soft handover probability considering new direction of motion of mobile station (MS) coinciding with gravitation point of cells. Our simulation results for 3-cell scenario and considered new direction of MS motion can be potentially used as advance input to soft handover algorithms to minimize number of handovers. 展开更多
关键词 HANDOVER threshold soft HANDOVER soft HANDOVER PROBABILITY WCDMA Networks
下载PDF
Influence analysis of complex crack geometric parameters on mechanical properties of soft rock
12
作者 Yang Zhao Xin He +3 位作者 Lishuai Jiang Zongke Wang Jianguo Ning Atsushi Sainoki 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期290-304,共15页
Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship ... Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering. 展开更多
关键词 CT scanning Complex crack Sampling threshold soft rock Rock mechanics Crack geometric parameters
下载PDF
基于灰度均值的自适应FAST角点检测优化算法
13
作者 刘艳 李一桐 《电光与控制》 CSCD 北大核心 2024年第2期65-71,91,共8页
光照不均、突变引起的灰度变化会影响图像特征检测效果。为此,设计一种基于灰度均值的自适应FAST-9-12角点检测算法。首先,利用特征点的延展性设计一种小面积双重检测模板,减少像素点与中心点的比较次数,提高区域正检率和检测速度;其次... 光照不均、突变引起的灰度变化会影响图像特征检测效果。为此,设计一种基于灰度均值的自适应FAST-9-12角点检测算法。首先,利用特征点的延展性设计一种小面积双重检测模板,减少像素点与中心点的比较次数,提高区域正检率和检测速度;其次,依据图像局部灰度均值,在每个像素点检测模板内自适应调整阈值,避免灰度变化影响检测效果;最后,根据柔性非极大值抑制的思想设计角点半径抑制原则,筛选鲁棒性更强的角点。在Inria遥感影像数据集上的实验结果表明,FAST-9-12角点检测速度比FAST-12-16,FAST-9-16两种模板提高22%左右,因自适应阈值的提取方式不易受光照影响,检测准确率分别提高4.16和3.11个百分点,实现了图像特征快速和精准检测。 展开更多
关键词 FAST角点检测 双重模板 自适应阈值 柔性非极大值抑制 角点半径抑制
下载PDF
WiCare:一种非接触式的老人如厕跌倒监测模型
14
作者 段鹏松 刁宪广 +3 位作者 张大龙 曹仰杰 刘广怡 孔金生 《计算机科学》 CSCD 北大核心 2024年第S01期751-758,共8页
老人在卫生间内的跌倒行为存在因救助及时性差而导致严重危害的风险,因此高效快捷的如厕跌倒监测研究具有重要意义。针对当前基于Wi-Fi感知的跌倒监测方法中存在的受噪声影响大而特征提取不充分、监测精度有限的问题,提出了一种基于多... 老人在卫生间内的跌倒行为存在因救助及时性差而导致严重危害的风险,因此高效快捷的如厕跌倒监测研究具有重要意义。针对当前基于Wi-Fi感知的跌倒监测方法中存在的受噪声影响大而特征提取不充分、监测精度有限的问题,提出了一种基于多级离散小波变换和软阈值处理的信号降噪算法,及一种融合卷积神经网络、双向长短期记忆网络及自注意力机制的非接触式如厕跌倒监测模型WiCare。首先,从原始CSI数据中提取振幅作为基础数据;其次,使用多级离散小波变换和软阈值处理进行感知数据降噪;然后,将感知数据进行多维重构,以更准确地表征跌倒行为特征;最后,利用WiCare提取感知数据中的有效特征,进而实现卫生间如厕跌倒行为监测功能。实验结果表明,WiCare在居家卫生间环境下对跌倒行为监测的准确率为99.41%,与其他同类模型相比,WiCare的识别准确率高,模型复杂度低,且泛化能力更强。 展开更多
关键词 Wi-Fi感知 如厕跌倒监测 离散小波变换 软阈值处理 深度学习
下载PDF
基于多残差注意力深度收缩网络的超微光图像增强方法
15
作者 刘宁 蔡闻超 +5 位作者 陈颜皓 刘尧振 许吉 章文欣 宋仁轩 祝福 《南京邮电大学学报(自然科学版)》 北大核心 2024年第2期69-82,共14页
超微光成像可在极度黑暗的环境中给观察者提供近乎白昼的视觉体验,在许多民用和军事应用中起着至关重要的作用。超微光环境下拍摄的图像和视频通常存在亮度与对比度极低、噪声水平高、场景细节和色彩严重缺失等固有缺陷,近年来,深度学... 超微光成像可在极度黑暗的环境中给观察者提供近乎白昼的视觉体验,在许多民用和军事应用中起着至关重要的作用。超微光环境下拍摄的图像和视频通常存在亮度与对比度极低、噪声水平高、场景细节和色彩严重缺失等固有缺陷,近年来,深度学习为超微光成像的研究带来了新的机遇。文中采集并提供了一组实用性更强的超微光训练数据集,提出了一种多残差注意力深度收缩网络(Multi Residual Attention Shrinkage Network),以此实现了一种新的超微光成像方法。通过成功研制的小型化样机证实了该方法的工业量产前景。实现了基于通道注意力和空间注意力的残差内注意力机制,以及基于深度软阈值收缩的外注意力机制,不仅可以有效提取并还原极低照度环境下的图像细节信息,恢复场景真实色彩,而且可以有效去除此类环境下由成像设备感光不足带来的巨量噪声。实测效果显示该方法可对极低照度环境进行有效的增强且实时性高。通过与多种业界最新方法比较,文中方法在主观视觉体验以及客观参数两方面均表现更好。 展开更多
关键词 深度学习神经网络 超微光成像 内外注意力 多残差注意力 软阈值收缩
下载PDF
基于多尺度融合和时空特征的网络入侵检测模型
16
作者 龚星宇 来源 +1 位作者 李娜 雷璇 《计算机工程与设计》 北大核心 2024年第6期1640-1646,共7页
针对入侵检测模型提取特征能力不足,且流量数据中含冗余噪声的问题,提出一种基于多尺度融合和时空特征的ML-PFN入侵检测模型。采用多尺度特征融合技术分别提取数据中浅层特征信息和深层特征信息,使模型学习的特征更加丰富;采用软阈值函... 针对入侵检测模型提取特征能力不足,且流量数据中含冗余噪声的问题,提出一种基于多尺度融合和时空特征的ML-PFN入侵检测模型。采用多尺度特征融合技术分别提取数据中浅层特征信息和深层特征信息,使模型学习的特征更加丰富;采用软阈值函数和注意力机制自动选择合适的阈值,减少噪声及不相关信息对模型的干扰;融合时空特征构成多尺度空间特征提取长短时记忆-并行特征网络(MSFE LSTM-parallel feature network, ML-PFN)模型,并应用于网络入侵检测。通过3个公开数据集进行性能评估,实验结果表明,ML-PFN模型对比其它5种分类模型各项指标效果最好,在训练时长适中的同时准确率达到96.45%。 展开更多
关键词 入侵检测 冗余噪声 多尺度融合 时空特征 软阈值 注意力机制 长短时记忆
下载PDF
DRSN与集成融合的OFDM辐射源个体识别方法
17
作者 刘高辉 宋博武 《信号处理》 CSCD 北大核心 2024年第6期1062-1073,共12页
针对在低信噪下通信辐射源识别率低的问题,提出一种DRSN(Deep Residual Shrinkage Networks)与集成融合的OFDM辐射源个体识别方法。首先,从OFDM发射机产生信号的原理出发,对可能产生OFDM发射机指纹差异的来源进行分析,对相邻帧OFDM信号... 针对在低信噪下通信辐射源识别率低的问题,提出一种DRSN(Deep Residual Shrinkage Networks)与集成融合的OFDM辐射源个体识别方法。首先,从OFDM发射机产生信号的原理出发,对可能产生OFDM发射机指纹差异的来源进行分析,对相邻帧OFDM信号做相干积累,有效提升OFDM信号的信噪比,通过截取OFDM前导信号,减少因传输内容差异所带来的影响,对OFDM前导信号进行功率累加和双谱对角切片信号处理,构建OFDM前导信号的多域数据集;随后,将OFDM前导信号多域数据分别送入具有自动软阈值化去噪和具有跨层连接结构防止梯度消失的DRSN网络进行训练,有效减少噪声对发射机指纹信号的干扰和避免阈值设置不佳所带来识别效果不佳的问题,并且在DRSN网络训练时采用5折交叉验证的策略,防止网络训练中出现过拟合的现象,利用Stacking集成学习思想实现3个DRSN网络初级预测结果的融合;最后,将融合结果作为次级数据送入逻辑回归LR(Logistic Regression)次级线性分类器,利用ECOC(Error Correcting Output Code)策略将多分类任务转为二分类任务,对样本类别进行编码,当测试样本经过二分类器获得一组预测类别编码后,通过计算样本类别编码与预测类别编码之间的欧式距离,根据最小欧式距离所属类别来确定最终分类结果。在公开数据集上的实验结果表明:对比其他深度学习的方法,信噪比为5 dB和0 dB时,DRSN与集成融合的OFDM辐射源识别的准确率分别为97%和95.88%,并且具有较低的复杂度,能够验证在低信噪比下该方法的有效性。 展开更多
关键词 残差收缩网络 集成融合 软阈值化 辐射源识别
下载PDF
基于双阶段特征提取网络的ECG降噪分类算法
18
作者 林楠 唐凯鹏 +1 位作者 牛勇鹏 谢李鹏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第5期61-68,共8页
临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准... 临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准心电信号中提取空间特征;其次,在时间特征提取阶段,由长短期记忆网络与注意力机制结合继续从心电信号中提取时间特征;最后,通过全连接网络层融合提取到的空间特征与时间特征,输出9个类别的概率预测分布。在CPSC2018数据集上与其他同类型先进分类算法进行了对比实验,验证所提算法的效果,实验结果表明:提出的分类算法在对9类ECG信号进行分类时平均F1分数达到0.854,在各项指标上表现更优。此外,实验证明所提算法在含噪数据中的表现也优于其他主流网络,充分证明了所提算法对于含噪心电信号的降噪分类性能,该算法也可应用于其他类似含噪声生理信号的分析和处理。 展开更多
关键词 心电信号分类 心电信号去噪 残差收缩网络 软阈值化 注意力机制
下载PDF
预算软约束对地区经济增长的影响及其门槛效应研究
19
作者 唐志军 张佳佳 《重庆科技大学学报(社会科学版)》 2024年第5期16-30,共15页
在内外需求日益疲软以及地方债务规模较大的情况下,我国推出了一系列积极的财政措施,这要求政府增加举债规模。本研究从全国范围和东、中、西部地区出发,使用基准回归模型和门槛效应模型对地方政府预算软约束对经济增长的影响进行了实... 在内外需求日益疲软以及地方债务规模较大的情况下,我国推出了一系列积极的财政措施,这要求政府增加举债规模。本研究从全国范围和东、中、西部地区出发,使用基准回归模型和门槛效应模型对地方政府预算软约束对经济增长的影响进行了实证检验。研究发现,地方政府财政预算软约束显著阻碍了地区经济增长,且二者之间存在显著的门槛效应。异质性分析表明,地方政府预算软约束对经济增长的负向作用会受到区域差异的影响。因此,地方政府应采取优化转移支付制度、促进融资平台的市场化转型、完善过度负债约束机制、转变官员政绩考核理念、因地制宜地制定差异性防范政策等措施稳定地区经济增长。 展开更多
关键词 地方政府债务 预算软约束 经济增长 门槛效应 异质性
下载PDF
基于增强梯度算子的软阈值宽带频谱感知算法 被引量:1
20
作者 巩克现 房家乐 +2 位作者 刘宏华 孙鹏 王玮 《通信学报》 EI CSCD 北大核心 2024年第5期115-127,共13页
为了改善信号梯度特征对幅度的损失以及寻求描述信号的最佳尺度问题,提出了一种基于增强梯度算子的软阈值宽带频谱感知算法。通过引入梯度增强算子还原信号幅值特征,结合信号本身梯度特征,使用不同的尺度描述信号梯度增量,得到软阈值判... 为了改善信号梯度特征对幅度的损失以及寻求描述信号的最佳尺度问题,提出了一种基于增强梯度算子的软阈值宽带频谱感知算法。通过引入梯度增强算子还原信号幅值特征,结合信号本身梯度特征,使用不同的尺度描述信号梯度增量,得到软阈值判据,进一步加入尺度融合单元,利用硬阈值加软阈值联合判断的方法,得到描述信号的最佳尺度。理论分析和仿真实验结果表明,在高斯信道和瑞利衰落信道下,相较于MPSG算法,所提算法的检测概率和虚警概率均有明显改善,且复杂度更低。通过对比实测数据的检测效果,所提算法更适用于实际工程中。 展开更多
关键词 频谱感知 增强梯度算子 软阈值 尺度融合
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部