Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton re...Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns.Deep learning techniques like convolutional neural networks(CNNs),long short-term memory(LSTM),and graph convolutional networks(GCNs)improve recognition in large datasets,while the traditional machine learning methods like SVM(support vector machines),RF(random forest),and LR(logistic regression),combined with handcrafted features and ensemble approaches,perform well but struggle with the complexity of fast-paced sports like badminton.We proposed an ensemble learning model combining support vector machines(SVM),logistic regression(LR),random forest(RF),and adaptive boosting(AdaBoost)for badminton action recognition.The data in this study consist of video recordings of badminton stroke techniques,which have been extracted into spatiotemporal data.The three-dimensional distance between each skeleton point and the right hip represents the spatial features.The temporal features are the results of Fast Dynamic Time Warping(FDTW)calculations applied to 15 frames of each video sequence.The weighted ensemble model employs soft voting classifiers from SVM,LR,RF,and AdaBoost to enhance the accuracy of badminton action recognition.The E2 ensemble model,which combines SVM,LR,and AdaBoost,achieves the highest accuracy of 95.38%.展开更多
In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion ...In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.展开更多
The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To ...The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To assess their performance, we used 14 different classifiers in this study. Secondly, we looked at how soft voting and hard voting classifiers performed in a mixture of distinct individual classifiers. Finally, heuristics are used to create 9 models of stacking classifiers. The F1 score, prediction, recall, and accuracy have all been used to assess performance. Models 6 and 7 achieved the best accuracy of 96.13 while having a larger computational complexity. For benchmarking purposes, other individual classifiers are also tested.展开更多
基金supported by the Center for Higher Education Funding(BPPT)and the Indonesia Endowment Fund for Education(LPDP),as acknowledged in decree number 02092/J5.2.3/BPI.06/9/2022。
文摘Incredible progress has been made in human action recognition(HAR),significantly impacting computer vision applications in sports analytics.However,identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns.Deep learning techniques like convolutional neural networks(CNNs),long short-term memory(LSTM),and graph convolutional networks(GCNs)improve recognition in large datasets,while the traditional machine learning methods like SVM(support vector machines),RF(random forest),and LR(logistic regression),combined with handcrafted features and ensemble approaches,perform well but struggle with the complexity of fast-paced sports like badminton.We proposed an ensemble learning model combining support vector machines(SVM),logistic regression(LR),random forest(RF),and adaptive boosting(AdaBoost)for badminton action recognition.The data in this study consist of video recordings of badminton stroke techniques,which have been extracted into spatiotemporal data.The three-dimensional distance between each skeleton point and the right hip represents the spatial features.The temporal features are the results of Fast Dynamic Time Warping(FDTW)calculations applied to 15 frames of each video sequence.The weighted ensemble model employs soft voting classifiers from SVM,LR,RF,and AdaBoost to enhance the accuracy of badminton action recognition.The E2 ensemble model,which combines SVM,LR,and AdaBoost,achieves the highest accuracy of 95.38%.
基金support and help from the People’s Armed Police Force of China Engineering University,College of Information Engineering Subject Group,which funded this work under the All-Army Military Theory Research Project,Armed Police Force Military Theory Research Project(WJJY22JL0498).
文摘In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.
文摘The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To assess their performance, we used 14 different classifiers in this study. Secondly, we looked at how soft voting and hard voting classifiers performed in a mixture of distinct individual classifiers. Finally, heuristics are used to create 9 models of stacking classifiers. The F1 score, prediction, recall, and accuracy have all been used to assess performance. Models 6 and 7 achieved the best accuracy of 96.13 while having a larger computational complexity. For benchmarking purposes, other individual classifiers are also tested.