As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study ...As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.展开更多
Composites of SmCo5-FeNi and SmCo5-FeCo, hard-soft magnetic materials, have been synthesized via electroless plating of magnetically hard SmCo5 powder particles with magnetically soft FeNi and FeCo, respectively. The ...Composites of SmCo5-FeNi and SmCo5-FeCo, hard-soft magnetic materials, have been synthesized via electroless plating of magnetically hard SmCo5 powder particles with magnetically soft FeNi and FeCo, respectively. The influence of coating thickness of soft magnetic layers on the structure and magnetic properties of the composite has been studied. Overall FeNi coating was found to be less dense compared to FeCo for the same plating duration. Structurally the coat ing was found to be nodular in morphology. These coating have dramatic effect on the overall magnetic property of the composite. As compared to FeNi coated SmCo5 composite, two-fold increase in the saturation magnetization has been observed upon coating SmCo5 (Ms^28 emu/g) with FeCo to a value 56 emu/g. The coercivity of composite powder was found to decrease with increasing the coating layer thickness. The absence of exchange spring behavior in the hard-soft composite is attributed to magnetically soft layer thickness exceeding the theoretical length limit for exchange-spring coupling.展开更多
Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures und...Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support.展开更多
随着工程电介质领域研究的发展,诸多没有得到公认解释的问题逐渐出现,为此,本文提出了几个重要的问题及思考以供相关研究工作者参考。1994年Lewis首次提出了纳米电介质,2003年至今已成为工程电介质领域的研究热点,但从20余年该领域的研...随着工程电介质领域研究的发展,诸多没有得到公认解释的问题逐渐出现,为此,本文提出了几个重要的问题及思考以供相关研究工作者参考。1994年Lewis首次提出了纳米电介质,2003年至今已成为工程电介质领域的研究热点,但从20余年该领域的研究内容、作者的原意以及新近又提出的纳米结构电介质来看,我们认为应把名称改为纳米电介质复合物,并按照低维物理对纳米电介质作了重新定义。分析了Lewis与Tanaka界面的具体含义,提出了纳米高聚物复合物硬/软界面及其具有结构复杂性、不确定性与易变性的新概念,并剖析了硬、软表面的尺度及理化特性。提出了从A Einstein还原论、P W Anderson的层展现象与R P Feynmann的思维方法以启迪相关研究的新思维。从空间电荷限制电流(SCLC)存在条件的约束和高聚物或其复合物中由于自身结构的多层次性、复杂界面、电极接触以及共存的电子与离子电导等因素的严重影响,提出了从欧姆区过渡到高场区(即电极注入的SCLC区)不完全是由一种与注入载流子相同的载流子决定的想法,特别是要严格审视在测量条件确定时,离子电导对低场与高场区电流的贡献。为此,列出了离子电导与电子电导的主要特征与区别方法。针对脉冲有关的测量空间电荷的方法,特别是已成为国际上测量空间电荷主流方法的脉冲电声(PEA)方法,提出了PEA的优点与不足之处,以及如何去校准测量结果的正确性、重复性,如依据高聚物结构的特征,建立压激电流(pressure stimulated current,PSC)装置,正确判断电子、离子、偶极子梯度产生的空间电荷,以弥补PEA测量的严重不足。展开更多
基金supported by the Xi’an Key Laboratory of Geotechnical and Underground Engineering Open Fund Project (XKLGUEKF20-03)the Natural Science Basic Research Program of Shaanxi Province General Project-Youth Project(2024JC-YBQN-0258)。
文摘As one of the most common occurring geological landforms in deep rock formations, the dynamic mechanical properties of layered composite rock bodies under impact loading have been widely studied by scholars. To study the dynamic properties of soft and hard composite rocks with different thickness ratios, this paper utilizes cement, quartz sand and gypsum powder to construct soft and hard composite rock specimens and utilizes a combination of indoor tests, numerical calculations, and theoretical analyses to investigate the mechanical properties of soft and hard composite rock bodies. The test results reveal that:(1) When the proportion of hard rock increases from 20% to 50%, the strength of the combined rock body increases by 69.14 MPa and 87 MPa when the hard rock face and soft rock face are loaded, respectively;however, when the proportion of hard rock is the same, the compressive strength of the hard rock face impact is 9%-17% greater than that of the soft rock face impact;(2) When a specimen of soft and hard combined rock body is subjected to impact loading, the damage mode involves mixed tension and shear damage, and the cracks generally first appear at the ends of the specimen, then develop on the laminar surface from the impact surface, and finally end in the overall damage of the soft rock part. The development rate and the total number of cracks in the same specimen when the hard rock face is impacted are significantly greater than those when the soft rock face is impacted;(3) By introducing Weibull’s statistical strength theory to establish the damage variables of soft-hard combined rock bodies, combined with the DP strength criterion, the damage model and the Kelvin body are concatenated to obtain a statistical damage constitutive model, which can better fit the full stress-strain curve of soft-hard combined rock body specimens under a single impact load.
文摘Composites of SmCo5-FeNi and SmCo5-FeCo, hard-soft magnetic materials, have been synthesized via electroless plating of magnetically hard SmCo5 powder particles with magnetically soft FeNi and FeCo, respectively. The influence of coating thickness of soft magnetic layers on the structure and magnetic properties of the composite has been studied. Overall FeNi coating was found to be less dense compared to FeCo for the same plating duration. Structurally the coat ing was found to be nodular in morphology. These coating have dramatic effect on the overall magnetic property of the composite. As compared to FeNi coated SmCo5 composite, two-fold increase in the saturation magnetization has been observed upon coating SmCo5 (Ms^28 emu/g) with FeCo to a value 56 emu/g. The coercivity of composite powder was found to decrease with increasing the coating layer thickness. The absence of exchange spring behavior in the hard-soft composite is attributed to magnetically soft layer thickness exceeding the theoretical length limit for exchange-spring coupling.
基金This study was supported by the Natural Science Foundation of Hubei Province(No.2020CFB123)the Scientific Research Program of Hubei Education Department(No.Q20201109).
文摘Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support.
文摘随着工程电介质领域研究的发展,诸多没有得到公认解释的问题逐渐出现,为此,本文提出了几个重要的问题及思考以供相关研究工作者参考。1994年Lewis首次提出了纳米电介质,2003年至今已成为工程电介质领域的研究热点,但从20余年该领域的研究内容、作者的原意以及新近又提出的纳米结构电介质来看,我们认为应把名称改为纳米电介质复合物,并按照低维物理对纳米电介质作了重新定义。分析了Lewis与Tanaka界面的具体含义,提出了纳米高聚物复合物硬/软界面及其具有结构复杂性、不确定性与易变性的新概念,并剖析了硬、软表面的尺度及理化特性。提出了从A Einstein还原论、P W Anderson的层展现象与R P Feynmann的思维方法以启迪相关研究的新思维。从空间电荷限制电流(SCLC)存在条件的约束和高聚物或其复合物中由于自身结构的多层次性、复杂界面、电极接触以及共存的电子与离子电导等因素的严重影响,提出了从欧姆区过渡到高场区(即电极注入的SCLC区)不完全是由一种与注入载流子相同的载流子决定的想法,特别是要严格审视在测量条件确定时,离子电导对低场与高场区电流的贡献。为此,列出了离子电导与电子电导的主要特征与区别方法。针对脉冲有关的测量空间电荷的方法,特别是已成为国际上测量空间电荷主流方法的脉冲电声(PEA)方法,提出了PEA的优点与不足之处,以及如何去校准测量结果的正确性、重复性,如依据高聚物结构的特征,建立压激电流(pressure stimulated current,PSC)装置,正确判断电子、离子、偶极子梯度产生的空间电荷,以弥补PEA测量的严重不足。