Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion...Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.展开更多
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts...Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.展开更多
The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pore...The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
Two new nonmetal borates, [(C2H10N2)]2[B14O20(OH)6] 1 and [C8H22N4][B5O6(OH)4]2 2, have been synthesized under mild conditions and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis and ...Two new nonmetal borates, [(C2H10N2)]2[B14O20(OH)6] 1 and [C8H22N4][B5O6(OH)4]2 2, have been synthesized under mild conditions and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis and thermogravimetric analysis. Crystal data for compound 1: triclinic, space group P^-1, a = 8.4979(17), b = 8.8498(18), c = 10.065(2)A^°, α = 95.01(3), β = 96.99(3), γ = 116.82(3)°, V= 661.8(3)A^°^3, Z= 1, Mr = 697.63, Dc = 1.751 g/cm^3,μ = 0.163 mm^-1, F(000) = 356, the final R = 0.0372 and wR = 0.0968 (I 〉 2σ(I)); and those for compound 2: monoclinic, space group P21/c, a = 9.1867(18), b= 14.118(3), c = 10.334(2)A^°, β = 91.48(3)°, V = 1339.8(5)A^°^3, Z = 2, Mr = 610.46, Dc = 1.513 g/cm^3,μ = 0.135 mm^-1, F(000) = 632, the final R = 0.0350 and wR = 0.0912 (I 〉 2σ(I)). For both 1 and 2, the anionic units are interlinked via O-H…O hydrogen bonds to form a 3D supramolecular network, while the protonated cations are located in the free space of the inorganic borate framework and interact with the anions by electrostatic attraction and extensive N-H…O hydrogen bonds.展开更多
Ultrathin polydopamine microcapsules with hierarchical structure and porosity were prepared for the immobilization of multienzymes using metal-organic framework(MOF) as the template.The multienzyme/MOF composite was f...Ultrathin polydopamine microcapsules with hierarchical structure and porosity were prepared for the immobilization of multienzymes using metal-organic framework(MOF) as the template.The multienzyme/MOF composite was first prepared using a "one-pot" co-precipitation approach via the coordination and self-assembly of zinc ions and 2-methylimidazole in the presence of enzymes.The obtained nanoparticles were then coated with polydopamine thin layer through the self-polymerization of dopamine under alkaline condition.The polydopamine microcapsules with an ultrathin shell thickness of ~48 nm were finally generated by removing the MOF template at acidic condition.Three enzymes were encapsulated in PDA microcapsules including carbonic anhydrase(CA),formate dehydrogenase(FateDH),and glutamate dehydrogenase(GDH).FateDH that catalyzed the main reaction of CO_(2) reduction to formic acid retained 94.7% activity of equivalent free FateDH.Compared with free multienzymes,the immobilized ones embedded in PDA microcapsules exhibited 4.5-times higher of formate production and high catalytic efficiency with a co-factor-based formate yield of 342%.展开更多
Two organically templated uranium phosphites, (C4H12N)(UO2)(HPO3)(NO3) (Mr = 486.16) 1 and (C16H36N)2(UO2)2(H2PO3)2(HPO3)(NO3)2 (Mr= 1390.95) 2, were prepared by evaporation from aqueous solution...Two organically templated uranium phosphites, (C4H12N)(UO2)(HPO3)(NO3) (Mr = 486.16) 1 and (C16H36N)2(UO2)2(H2PO3)2(HPO3)(NO3)2 (Mr= 1390.95) 2, were prepared by evaporation from aqueous solution of uranyl nitrate, phosphite acid and their respective organic ammonium hydroxids. Their structures were determined by single-crystal X-ray diffraction and further characterized by infrared and fluorescence spectroscopy. In 1, pentagonal [UO7] bipyramids share comers with three [HPO3]2- tetrahedra and one edge with a [NO3]- anion to form [(UO2)- (HPO3)(NO3)]^- ladder-like chains parallel to the b axis. The structure of 2 is also based upon one-dimensional anionic [(UO2)2(H2PO3)2(HPO3)(NO3)2]2-chains of comer-sharing penta- gonal [UOT] bipyramids with [H2PO3]- and [HPO3] tetrahedra, which is still unknown in structural chemistry of uranium so far. Crystal data for 1: monoclinic, space group C2/m, a = 21.808(7), b = 6.9605(15), c = 8.357(2) A, β = 98.327(15)°, V= 1255.2(6) A^3, Z = 4, Dc = 2.573 g/cm^3, F(000) = 888, μ = 13.086 mm^-1 the final R = 0.0418 and wR = 0.0906 (I 〉 2σ(I)); and those for 2: monoclinic, space group C2/c, a = 36.4549(8), b = 14.5296(11), c = 20.8253(11) A, β = 101.7440(8)°, V= 10799.7(10) A3, Z = 8, Dc= 1.711 g/cm^3, F(000) = 5424,μ = 6.144 mm^-1, the final R= 0.0368 and wR= 0.0865 (I〉 2σ(I)).展开更多
Monodisperse Mn3O4 nanoparticles were prepared solvothermally starting from manganese acetate by using polyether amide block copolymers(Pebax2533) as a template in isopropanol. The diameter of the nanoparticles in the...Monodisperse Mn3O4 nanoparticles were prepared solvothermally starting from manganese acetate by using polyether amide block copolymers(Pebax2533) as a template in isopropanol. The diameter of the nanoparticles in the range of 8.7 nm^31.5 nm was decreased with increase of Pebax2533 concentration.The electrochemical properties and application in supercapacitor of Mn3O4 nanoparticles were further studied.The results showed that smaller nanoparticles had a larger capacitance. The higher capacitance of 217.5 F/g at a current density of 0.5 A/g was obtained on 8.7 nm Mn3O4 nanoparticles. The specific capacitance retention of 82% was maintained after 500 times of continuous charge-discharge cycles.展开更多
A novel route for the synthesis of alumina nanospheres was reported by a surfactant-governed approach in the presence of lauric acid.The products were characterized using X-ray diffraction (XRD),scanning electron mi...A novel route for the synthesis of alumina nanospheres was reported by a surfactant-governed approach in the presence of lauric acid.The products were characterized using X-ray diffraction (XRD),scanning electron microscope (SEM) and N2 adsorption-desorption techniques.The results show that the produced alumina nanospheres possess uniform nanosphere sizes ranging from 80 120 nm,and high surface area of 550 m2/g.It suggests that the synthesized alumina nanospheres are formed through self-assembly of surfactant/alumina species complex in 1-propanol system.展开更多
A new one-dimensional aluminum fluorophosphate, AlP2O5(OH)3F·0.5[H2dien] (dien=diethylenetriamine), was solvothermally synthesized by using organic amine as the structure directing agent, and its structure wa...A new one-dimensional aluminum fluorophosphate, AlP2O5(OH)3F·0.5[H2dien] (dien=diethylenetriamine), was solvothermally synthesized by using organic amine as the structure directing agent, and its structure was determined by single-crystal X-ray diffraction. The complex inorganic architecture consists of trans-corner-sharing AlO4F2 octahedra chain decorated by phosphate tetrahedra along both sides of the -F-Al-F-Al-F- backbone displaying a series of Al2P three-membered rings, which will represent a new fundamental structural type in metal phosphates. The results of CHN elemental analysis, EDS, and TGA are also presented. Crystal data: C4H18Al2F2N3O16P4, monoclinic, space group P21/c with a=6.9107(14), b=15.749(3), c=8.9741(18) , β=109.829(2)o, V=918.8(3) 3, Z=2, Mr=580.05, Dc=2.097 g/cm3, μ=0.618 mm-1, S=1.022, F(000)=590, the final R=0.0510 and wR=0.1284 for 1607 observed reflections (I 〉 2σ(I)).展开更多
Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures ...Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.展开更多
Noodle-like mesoporous silica with a diameter of about 180 nm and a length of ca. 10 靘 was prepared through sol-gel process by using poly(sodium 4-styrenesulfonate) (PSS)/ cetyltrimethylammonium bromide (CTAB) comple...Noodle-like mesoporous silica with a diameter of about 180 nm and a length of ca. 10 靘 was prepared through sol-gel process by using poly(sodium 4-styrenesulfonate) (PSS)/ cetyltrimethylammonium bromide (CTAB) complex as template. Parallel oriented regular mesopores with a diameter of around 24 nm are distributed along the wall of the particles, while the 搘orm-like?disordered mesopores can be found in the fringe part. This approach provides a new series of templates and a novel route to prepare inorganic mesoporous materials with special morphology.展开更多
A novel macrolactonization method was developed using a chiral β-lactam as the template. This novel method features that the macrocyclization is simultaneously achieved while a TBS protected hydroxy group is deprotec...A novel macrolactonization method was developed using a chiral β-lactam as the template. This novel method features that the macrocyclization is simultaneously achieved while a TBS protected hydroxy group is deprotected.展开更多
The title compound [ Mn5 ( H2PO4 )2 ( PO4 )2 ( H20)4 ] was hydrothermally synthesized in the presence of calix[4]arene-p-tetrasulfonate. The title compound was structurally characterized by X-ray single crystal ...The title compound [ Mn5 ( H2PO4 )2 ( PO4 )2 ( H20)4 ] was hydrothermally synthesized in the presence of calix[4]arene-p-tetrasulfonate. The title compound was structurally characterized by X-ray single crystal diffraction. It crystallizes in the monoclinic space group C2/c with α = 1.762 9(4) nm, b = 0.913 44(18) nm, c=0.94977(19) nm, β=96.52(3)°, V=1.5195(5) nm^3, Z=4 and R1=0.0283, and exhibits a three-dimensional framework and channel structure. It was proposed that calixarene can act as template during the formation of the title compound because calixarene can bind Mn^2+ through second-sphere coordination.展开更多
A silver iodide, (ipq)4Ag418 1, has been synthesized in the presence of ipq (ipq = N-(isopentyl)-quinolinium) acting as a structure-directing reagent (SDA). Compound 1 crystallizes in the triclinic system, spa...A silver iodide, (ipq)4Ag418 1, has been synthesized in the presence of ipq (ipq = N-(isopentyl)-quinolinium) acting as a structure-directing reagent (SDA). Compound 1 crystallizes in the triclinic system, space group PT, with a = 9.850(2), b = 11.564(2), c = 16.111(3) ,A ,α = 104.64(3), β = 105.73(3), γ = 94.37(3)o, V= 1688.3(7) A^3, Z = 2, D,= 2.205 g/cm^3, F(000) = 1042, C28H33Ag2l4N2, Mr= 1120.90, μ(MoKa) = 4.836 mm^-1, the final R = 0.0363 and wR = 0.0761 for 5465 observed reflections with 1 〉 2σ(I). 1 consists of uncoordinated structure-directing molecule and inorganic moiety tuned by organic SDA. Tetrameric Ag4I8^4- anion in 1 is composed of edgesharing AgI4 tetrahedra and AgI3 planar triangles. Electrostatic interaction between organic counter cations and inorgan!c moieties is present and contributes to the crystal packing. 1 was further characterized with IR, UV-Vis, elemental analysis and cyclic voltammetry. Based on the crystal structure data, quantum chemical calculation with DFr method was used to reveal the electronic structure and optical property of 1.展开更多
A microporous organically-templated tungsten heteropolyacid, (C2N2H10)2 [H2P2W18O62]?8H2O, with a new type was hydrothermally synthesized by using ethylenediamine as the structure-directing agent. Its structure was ...A microporous organically-templated tungsten heteropolyacid, (C2N2H10)2 [H2P2W18O62]?8H2O, with a new type was hydrothermally synthesized by using ethylenediamine as the structure-directing agent. Its structure was determined by single-crystal X-ray diffraction analysis. Crystal data: monoclinic, space group P21/c, a = 14.633(4), b = 19.432(5), c = 26.776(5) ?, β = 117.849(11)o, V = 6732(3) ?3, Z = 4, Mr = 4615.48, Dc = 4.554 g/cm3, μ(MoKα) = 30.781 mm-1, F(000) = 7976, the final R = 0.0678 and wR = 0.1359. The crystal of the title compound is constructed by Dawson anions and organic dications forming a novel “hollow” channel system.展开更多
Following hydrothermal synthesis process, MCM-41 was synthesized by using cetyltriethylammonium bromide as templating agent. The experimental results showed that MCM-41 with pore diameter in the range of 4-7 nm can be...Following hydrothermal synthesis process, MCM-41 was synthesized by using cetyltriethylammonium bromide as templating agent. The experimental results showed that MCM-41 with pore diameter in the range of 4-7 nm can be obtained by adjusting nsurf/nsi. It was proved that cetyltriethylammonium bromide is an effective templating agent for increasing pore diameter of molecular sieve MCM-41.展开更多
Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage application...Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable synthesis in a large scale at low cost has readily become a focus of research.Herein we report diatomite-template generic and scalable production of VS2 and other transition metal sulfides targeting emerging energy conversion and storage applications.The conformal growth of VS2over diatomite template would endow them with defect-abundant features.Throughout detailed experimental investigation in combination with theoretical simulation,we reveal that the enriched active sites/sulfur vacancies of thus-derived VS2 architectures would pose positive impacts on the catalytic performance such in electrocatalytic hydrogen evolution reactions.We further show that the favorable electrical conductivity and highly exposed sites of VS2 hold promise for serving as sulfur host in the realm of Li-S batteries.Our work offers new insights into the templated and customized synthesis of defect-rich sulfides in a scalable fashion to benefit multifunctional energy applications.展开更多
The micelle-templated silica (MTS) was firstly chemically modified with 3-glycidoxypropyl-trimethoxysilane (GPTMS) before immobilized with pyoverdin I. The characteristics of pyoverdin I-anchored onto the modified...The micelle-templated silica (MTS) was firstly chemically modified with 3-glycidoxypropyl-trimethoxysilane (GPTMS) before immobilized with pyoverdin I. The characteristics of pyoverdin I-anchored onto the modified MTS were investigated using fluorescence, infrared spectra and scanning electron microscopy. The specific surface area of all materials was calculated by Branauer, Emmett and Teller (BET) method using nitrogen isotherm adsorption data. As the results, the surface area of commercial silica gel decreased from 609.2 to 405.4 m2/g, it indicated that the pyoverdin I could be immobilized onto the surface of silica solid support. This adsorbent was used for extraction of Fe(Ⅲ), Cu(Ⅱ), Zn(Ⅱ), and Pb(Ⅱ) in artificial metals contaminated water. Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch procedure. The optimum pH value for the removal of metal ions simultaneously on this adsorbent was 4.0. Complete desorption of the adsorbed metal ions from the adsorbent was carried out using 0.25 mol/L of EDTA. The effect of different cations and anions on the adsorption of these metals on adsorbent was studied and the results showed that the proposed adsorbent could be applied to the highly saline samples and the sample which contains some transition metals.展开更多
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit...Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.展开更多
基金financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Scientific Research Innovation Project of Graduate School of South China Normal University(2024KYLX047)financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technology.
文摘Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.
基金the support from the CIPHER Project(IIID 2018-008)funded by the Commission on Higher Education-Philippine California Advanced Research Institutes(CHED-PCARI)。
文摘Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested.
基金This work was supported by the National Natural Science Foundation of China (No. 20023003 and 20128004).
文摘The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
基金supported by the Natural Science Foundation of Ningbo City (2007A610022) K. C. Wong Magna Fund in Ningbo University
文摘Two new nonmetal borates, [(C2H10N2)]2[B14O20(OH)6] 1 and [C8H22N4][B5O6(OH)4]2 2, have been synthesized under mild conditions and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis and thermogravimetric analysis. Crystal data for compound 1: triclinic, space group P^-1, a = 8.4979(17), b = 8.8498(18), c = 10.065(2)A^°, α = 95.01(3), β = 96.99(3), γ = 116.82(3)°, V= 661.8(3)A^°^3, Z= 1, Mr = 697.63, Dc = 1.751 g/cm^3,μ = 0.163 mm^-1, F(000) = 356, the final R = 0.0372 and wR = 0.0968 (I 〉 2σ(I)); and those for compound 2: monoclinic, space group P21/c, a = 9.1867(18), b= 14.118(3), c = 10.334(2)A^°, β = 91.48(3)°, V = 1339.8(5)A^°^3, Z = 2, Mr = 610.46, Dc = 1.513 g/cm^3,μ = 0.135 mm^-1, F(000) = 632, the final R = 0.0350 and wR = 0.0912 (I 〉 2σ(I)). For both 1 and 2, the anionic units are interlinked via O-H…O hydrogen bonds to form a 3D supramolecular network, while the protonated cations are located in the free space of the inorganic borate framework and interact with the anions by electrostatic attraction and extensive N-H…O hydrogen bonds.
基金supported by the National Natural Science Foundation of China (31961133004, 21861132017)the National Key Research and Development Program of China (2018YFA0902200)the Fundamental Research Funds for the Central Universities (PT1917, buctrc201)。
文摘Ultrathin polydopamine microcapsules with hierarchical structure and porosity were prepared for the immobilization of multienzymes using metal-organic framework(MOF) as the template.The multienzyme/MOF composite was first prepared using a "one-pot" co-precipitation approach via the coordination and self-assembly of zinc ions and 2-methylimidazole in the presence of enzymes.The obtained nanoparticles were then coated with polydopamine thin layer through the self-polymerization of dopamine under alkaline condition.The polydopamine microcapsules with an ultrathin shell thickness of ~48 nm were finally generated by removing the MOF template at acidic condition.Three enzymes were encapsulated in PDA microcapsules including carbonic anhydrase(CA),formate dehydrogenase(FateDH),and glutamate dehydrogenase(GDH).FateDH that catalyzed the main reaction of CO_(2) reduction to formic acid retained 94.7% activity of equivalent free FateDH.Compared with free multienzymes,the immobilized ones embedded in PDA microcapsules exhibited 4.5-times higher of formate production and high catalytic efficiency with a co-factor-based formate yield of 342%.
文摘Two organically templated uranium phosphites, (C4H12N)(UO2)(HPO3)(NO3) (Mr = 486.16) 1 and (C16H36N)2(UO2)2(H2PO3)2(HPO3)(NO3)2 (Mr= 1390.95) 2, were prepared by evaporation from aqueous solution of uranyl nitrate, phosphite acid and their respective organic ammonium hydroxids. Their structures were determined by single-crystal X-ray diffraction and further characterized by infrared and fluorescence spectroscopy. In 1, pentagonal [UO7] bipyramids share comers with three [HPO3]2- tetrahedra and one edge with a [NO3]- anion to form [(UO2)- (HPO3)(NO3)]^- ladder-like chains parallel to the b axis. The structure of 2 is also based upon one-dimensional anionic [(UO2)2(H2PO3)2(HPO3)(NO3)2]2-chains of comer-sharing penta- gonal [UOT] bipyramids with [H2PO3]- and [HPO3] tetrahedra, which is still unknown in structural chemistry of uranium so far. Crystal data for 1: monoclinic, space group C2/m, a = 21.808(7), b = 6.9605(15), c = 8.357(2) A, β = 98.327(15)°, V= 1255.2(6) A^3, Z = 4, Dc = 2.573 g/cm^3, F(000) = 888, μ = 13.086 mm^-1 the final R = 0.0418 and wR = 0.0906 (I 〉 2σ(I)); and those for 2: monoclinic, space group C2/c, a = 36.4549(8), b = 14.5296(11), c = 20.8253(11) A, β = 101.7440(8)°, V= 10799.7(10) A3, Z = 8, Dc= 1.711 g/cm^3, F(000) = 5424,μ = 6.144 mm^-1, the final R= 0.0368 and wR= 0.0865 (I〉 2σ(I)).
基金financially supported by the National Natural Science Foundation of China (No.21373034)the Specially Hired Professorship-funding of Jiangsu province (No.scz1211400001)+1 种基金the start-up funds from Changzhou University Jiangsu province,Jiangsu key laboratory of advanced catalytic material and technology,Key laboratory of fine petrochemical engineeringPAPD of Jiangsu Higher Education Institutions
文摘Monodisperse Mn3O4 nanoparticles were prepared solvothermally starting from manganese acetate by using polyether amide block copolymers(Pebax2533) as a template in isopropanol. The diameter of the nanoparticles in the range of 8.7 nm^31.5 nm was decreased with increase of Pebax2533 concentration.The electrochemical properties and application in supercapacitor of Mn3O4 nanoparticles were further studied.The results showed that smaller nanoparticles had a larger capacitance. The higher capacitance of 217.5 F/g at a current density of 0.5 A/g was obtained on 8.7 nm Mn3O4 nanoparticles. The specific capacitance retention of 82% was maintained after 500 times of continuous charge-discharge cycles.
基金supported by the State Key Basic Research Program of China(2006CB202505)the National Natural Science Foundation of China(20806093)
文摘A novel route for the synthesis of alumina nanospheres was reported by a surfactant-governed approach in the presence of lauric acid.The products were characterized using X-ray diffraction (XRD),scanning electron microscope (SEM) and N2 adsorption-desorption techniques.The results show that the produced alumina nanospheres possess uniform nanosphere sizes ranging from 80 120 nm,and high surface area of 550 m2/g.It suggests that the synthesized alumina nanospheres are formed through self-assembly of surfactant/alumina species complex in 1-propanol system.
基金supported by the National Natural Science Foundation of China (Nos. 20971064 and 21071074)the Foundation of Education Committee of Henan Province (No. 092102210315)
文摘A new one-dimensional aluminum fluorophosphate, AlP2O5(OH)3F·0.5[H2dien] (dien=diethylenetriamine), was solvothermally synthesized by using organic amine as the structure directing agent, and its structure was determined by single-crystal X-ray diffraction. The complex inorganic architecture consists of trans-corner-sharing AlO4F2 octahedra chain decorated by phosphate tetrahedra along both sides of the -F-Al-F-Al-F- backbone displaying a series of Al2P three-membered rings, which will represent a new fundamental structural type in metal phosphates. The results of CHN elemental analysis, EDS, and TGA are also presented. Crystal data: C4H18Al2F2N3O16P4, monoclinic, space group P21/c with a=6.9107(14), b=15.749(3), c=8.9741(18) , β=109.829(2)o, V=918.8(3) 3, Z=2, Mr=580.05, Dc=2.097 g/cm3, μ=0.618 mm-1, S=1.022, F(000)=590, the final R=0.0510 and wR=0.1284 for 1607 observed reflections (I 〉 2σ(I)).
文摘Mesoporous zinc oxide nanostructures are successfully synthesized via the sol-gel route by using a rice husk as the template for ethanol sensing at room temperature. The structure and morphology of the nanostructures are characterized by x-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption analyses. The mechanism for the growth of zinc oxide nanostructures over the biotemplate is proposed. SEM and TEM observations also reveal the formation of spherical zinc oxide nanoparticles over the interwoven fibrous network. Multiple sized pores having pore diameter ranging from 10- 4Ohm is also evidenced from the pore size distribution plot. The larger surface area and porous nature of the material lead to high sensitivity (40.93% for 300 ppm of ethanol), quick response (42s) and recovery (40 s) towards ethanol at 30014. The porous nature of the interwoven fibre-like network affords mass transportation of ethanol vapor, which results in faster surface accessibility, and hence it acts as a potential candidate for ethanol sensing at room temperature.
文摘Noodle-like mesoporous silica with a diameter of about 180 nm and a length of ca. 10 靘 was prepared through sol-gel process by using poly(sodium 4-styrenesulfonate) (PSS)/ cetyltrimethylammonium bromide (CTAB) complex as template. Parallel oriented regular mesopores with a diameter of around 24 nm are distributed along the wall of the particles, while the 搘orm-like?disordered mesopores can be found in the fringe part. This approach provides a new series of templates and a novel route to prepare inorganic mesoporous materials with special morphology.
基金This work is supported by the National Natural Science Foundation of China (grant No: 20372056)a Research Fund from the Royal Society of Chemistry. UK.
文摘A novel macrolactonization method was developed using a chiral β-lactam as the template. This novel method features that the macrocyclization is simultaneously achieved while a TBS protected hydroxy group is deprotected.
基金Sponsored bythe National Natural Science Foundation of China (20271007) Specialized Research Fund for the Doctoral Program of HigherEducation (20030007014)
文摘The title compound [ Mn5 ( H2PO4 )2 ( PO4 )2 ( H20)4 ] was hydrothermally synthesized in the presence of calix[4]arene-p-tetrasulfonate. The title compound was structurally characterized by X-ray single crystal diffraction. It crystallizes in the monoclinic space group C2/c with α = 1.762 9(4) nm, b = 0.913 44(18) nm, c=0.94977(19) nm, β=96.52(3)°, V=1.5195(5) nm^3, Z=4 and R1=0.0283, and exhibits a three-dimensional framework and channel structure. It was proposed that calixarene can act as template during the formation of the title compound because calixarene can bind Mn^2+ through second-sphere coordination.
文摘A silver iodide, (ipq)4Ag418 1, has been synthesized in the presence of ipq (ipq = N-(isopentyl)-quinolinium) acting as a structure-directing reagent (SDA). Compound 1 crystallizes in the triclinic system, space group PT, with a = 9.850(2), b = 11.564(2), c = 16.111(3) ,A ,α = 104.64(3), β = 105.73(3), γ = 94.37(3)o, V= 1688.3(7) A^3, Z = 2, D,= 2.205 g/cm^3, F(000) = 1042, C28H33Ag2l4N2, Mr= 1120.90, μ(MoKa) = 4.836 mm^-1, the final R = 0.0363 and wR = 0.0761 for 5465 observed reflections with 1 〉 2σ(I). 1 consists of uncoordinated structure-directing molecule and inorganic moiety tuned by organic SDA. Tetrameric Ag4I8^4- anion in 1 is composed of edgesharing AgI4 tetrahedra and AgI3 planar triangles. Electrostatic interaction between organic counter cations and inorgan!c moieties is present and contributes to the crystal packing. 1 was further characterized with IR, UV-Vis, elemental analysis and cyclic voltammetry. Based on the crystal structure data, quantum chemical calculation with DFr method was used to reveal the electronic structure and optical property of 1.
基金This work was supported by the Fund for Distinguished Young Scholars (Inorganic Chemistry No. 20025101)+1 种基金 Key Project from NNSFC (No.50332050) State "863" Project (No. 2002AA324070) and Fund of Shanghai Optical Science and Technology (No. 022261015)
文摘A microporous organically-templated tungsten heteropolyacid, (C2N2H10)2 [H2P2W18O62]?8H2O, with a new type was hydrothermally synthesized by using ethylenediamine as the structure-directing agent. Its structure was determined by single-crystal X-ray diffraction analysis. Crystal data: monoclinic, space group P21/c, a = 14.633(4), b = 19.432(5), c = 26.776(5) ?, β = 117.849(11)o, V = 6732(3) ?3, Z = 4, Mr = 4615.48, Dc = 4.554 g/cm3, μ(MoKα) = 30.781 mm-1, F(000) = 7976, the final R = 0.0678 and wR = 0.1359. The crystal of the title compound is constructed by Dawson anions and organic dications forming a novel “hollow” channel system.
文摘Following hydrothermal synthesis process, MCM-41 was synthesized by using cetyltriethylammonium bromide as templating agent. The experimental results showed that MCM-41 with pore diameter in the range of 4-7 nm can be obtained by adjusting nsurf/nsi. It was proved that cetyltriethylammonium bromide is an effective templating agent for increasing pore diameter of molecular sieve MCM-41.
基金financially supported by the National Natural Science Foundation of China(nos.51702225,21671059,51702218)Jiangsu Youth Science Foundation(no.BK20170336)Program for Changjiang Scholars and Innovative Research Team in University(IRT-17R36).
文摘Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable synthesis in a large scale at low cost has readily become a focus of research.Herein we report diatomite-template generic and scalable production of VS2 and other transition metal sulfides targeting emerging energy conversion and storage applications.The conformal growth of VS2over diatomite template would endow them with defect-abundant features.Throughout detailed experimental investigation in combination with theoretical simulation,we reveal that the enriched active sites/sulfur vacancies of thus-derived VS2 architectures would pose positive impacts on the catalytic performance such in electrocatalytic hydrogen evolution reactions.We further show that the favorable electrical conductivity and highly exposed sites of VS2 hold promise for serving as sulfur host in the realm of Li-S batteries.Our work offers new insights into the templated and customized synthesis of defect-rich sulfides in a scalable fashion to benefit multifunctional energy applications.
基金supported by the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of EducationKhon Kaen University and the National Research Council of Thailand (NRCT) for facilitates both instruments and chemical including research grants
文摘The micelle-templated silica (MTS) was firstly chemically modified with 3-glycidoxypropyl-trimethoxysilane (GPTMS) before immobilized with pyoverdin I. The characteristics of pyoverdin I-anchored onto the modified MTS were investigated using fluorescence, infrared spectra and scanning electron microscopy. The specific surface area of all materials was calculated by Branauer, Emmett and Teller (BET) method using nitrogen isotherm adsorption data. As the results, the surface area of commercial silica gel decreased from 609.2 to 405.4 m2/g, it indicated that the pyoverdin I could be immobilized onto the surface of silica solid support. This adsorbent was used for extraction of Fe(Ⅲ), Cu(Ⅱ), Zn(Ⅱ), and Pb(Ⅱ) in artificial metals contaminated water. Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch procedure. The optimum pH value for the removal of metal ions simultaneously on this adsorbent was 4.0. Complete desorption of the adsorbed metal ions from the adsorbent was carried out using 0.25 mol/L of EDTA. The effect of different cations and anions on the adsorption of these metals on adsorbent was studied and the results showed that the proposed adsorbent could be applied to the highly saline samples and the sample which contains some transition metals.
基金supported by a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT),Republic of KoreaThe authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/13/40)+2 种基金Also,the authors are thankful to Prince Satam bin Abdulaziz University for supporting this study via funding from Prince Satam bin Abdulaziz University project number(PSAU/2024/R/1445)This work was also supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R54)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.