The primary mode of extraterrestrial exploration is a robotic system comprising a lander and a rover.However,the lander is immovable,and the rover has a restrictive detection area because of the difficulties of reachi...The primary mode of extraterrestrial exploration is a robotic system comprising a lander and a rover.However,the lander is immovable,and the rover has a restrictive detection area because of the difficulties of reaching complex terrains,such as those with deep craters.In this study,a six-legged mobile repetitive lander with landing and walking functions is designed to solve these problems.First,a six-legged mobile repetitive lander and its structure are introduced.Then,a soft-landing method based on compliance control and optimal force control is addressed to control the landing process.Finally,the experiments are conducted to validate the soft-landing method and its performances.Results show that the soft-landing method for the six-legged mobile repetitive lander can successfully control the joint torques and solve the soft-landing problem on complex terrains,such as those with steps and slopes.展开更多
软着陆探测是重要的地外天体探测方式,制导、导航与控制(Guidance,Navigation and Control,GNC)是地外天体软着陆成功的关键。首先梳理了国内外月球、火星和小天体等地外天体软着陆任务发展现状;在此基础上,总结了地外天体软着陆任务典...软着陆探测是重要的地外天体探测方式,制导、导航与控制(Guidance,Navigation and Control,GNC)是地外天体软着陆成功的关键。首先梳理了国内外月球、火星和小天体等地外天体软着陆任务发展现状;在此基础上,总结了地外天体软着陆任务典型GNC方案及自主导航与控制技术主要进展;最后,针对未来的地外天体精确定点软着陆任务,提出了需要重点关注和发展的自主导航与控制关键技术,为未来技术发展提供借鉴和参考。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.92248303)the Startup Fund for Young Faculty at Shanghai Jiao Tong University.
文摘The primary mode of extraterrestrial exploration is a robotic system comprising a lander and a rover.However,the lander is immovable,and the rover has a restrictive detection area because of the difficulties of reaching complex terrains,such as those with deep craters.In this study,a six-legged mobile repetitive lander with landing and walking functions is designed to solve these problems.First,a six-legged mobile repetitive lander and its structure are introduced.Then,a soft-landing method based on compliance control and optimal force control is addressed to control the landing process.Finally,the experiments are conducted to validate the soft-landing method and its performances.Results show that the soft-landing method for the six-legged mobile repetitive lander can successfully control the joint torques and solve the soft-landing problem on complex terrains,such as those with steps and slopes.
文摘软着陆探测是重要的地外天体探测方式,制导、导航与控制(Guidance,Navigation and Control,GNC)是地外天体软着陆成功的关键。首先梳理了国内外月球、火星和小天体等地外天体软着陆任务发展现状;在此基础上,总结了地外天体软着陆任务典型GNC方案及自主导航与控制技术主要进展;最后,针对未来的地外天体精确定点软着陆任务,提出了需要重点关注和发展的自主导航与控制关键技术,为未来技术发展提供借鉴和参考。