The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ...The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.展开更多
The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron...The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.展开更多
Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical prec...Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.展开更多
With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for pri...With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for prismatic high current lithium-iron-phosphate battery is presented. An automotive TSLFP160AHA lithium-iron-phosphate battery bank is tested. The different capacity GBDLFMP60AH battery bank is used to validate the model extracted from the former battery. Effect of current, stacking and SOC upon the battery parameters performance is investigated. Six empirical equations are obtained to extract the prismatic type LiFePO4 model as a function of SOC. Based on comparing the measured and simulated data, a well accuracy of less than 50mV maximum error voltage with 1.7% operating time error referred to the measured data is achieved. The model can be easily modified to simulate different batteries and can be extended for wide ranges of different currents.展开更多
The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron pho...The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application.展开更多
The recycling of spent LiFePO_(4)batteries has received extensive attention due to its environmental impact and economic benefit.In the pretreatment process of spent LiFePO_(4)batteries,the separation of active materi...The recycling of spent LiFePO_(4)batteries has received extensive attention due to its environmental impact and economic benefit.In the pretreatment process of spent LiFePO_(4)batteries,the separation of active materials and current collectors determines the difficulty of the re-covery process and product quality.In this work,a facile and efficient pretreatment process is first proposed.After only freezing the electrode pieces and immersing them in boiling water,LiFePO_(4)materials were peeled from the Al foil.Then,after roasting under an inert atmosphere and sieving,all the cathode and anode active materials were easily and efficiently separated from the Al and Cu foils.The active materials were subjected to acid leaching,and the leaching solution was further used to prepare FePO_(4)and Li_(2)CO_(3).Finally,the battery-grade FePO_(4)and Li_(2)CO_(3)were used to re-synthesize LiFePO_(4)/C via the carbon thermal reduction method.The discharge capacities of re-synthesized LiFePO_(4)/C cathode were 144.2,139.0,133.2,125.5,and 110.5 mA·h·g−1 at rates of 0.1,0.5,1,2,and 5 C,which satisfies the requirement for middle-end LiFePO_(4)batteries.The whole process is environmental and has great potential for industrial-scale recycling of spent lithium-ion batteries.展开更多
This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the compos...This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon.展开更多
Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) wi...Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePOand directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePOnanorods with the reducing crystal size along the b axis shorten the diffusion distance of Liextraction/insertion, and thus improve the electrochemical properties of LiFePOnanorods. Such prepared LiFePOnanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePOnanorods is supposed to be ascribed to the fast Lidiffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra).展开更多
In this paper,an efficient model structure composed of a second-order resistance-capacitance network and a simply analytical open circuit voltage versus state of charge(SOC) map is applied to characterize the voltage ...In this paper,an efficient model structure composed of a second-order resistance-capacitance network and a simply analytical open circuit voltage versus state of charge(SOC) map is applied to characterize the voltage behavior of a lithium iron phosphate battery for electric vehicles(EVs).As a result,the overpotentials of the battery can be depicted using a second-order circuit network and the model parameterization can be realized under any battery loading profile,without a special characterization experiment.In order to ensure good robustness,extended Kalman filtering is adopted to recursively implement the calibration process.The linearization involved in the calibration algorithm is realized through recurrent derivatives in a recursive form.Validation results show that the recursively calibrated battery model can accurately delineate the battery voltage behavior under two different transient power operating conditions.A comparison with a first-order model indicates that the recursively calibrated second-order model has a comparable accuracy in a major part of the battery SOC range and a better performance when the SOC is relatively low.展开更多
Due to the large error of the traditional battery theoretical model during large-rate discharge for electromagnetic launch,the Shepherd derivative model considering the factors of the pulse cycle condition,temperature...Due to the large error of the traditional battery theoretical model during large-rate discharge for electromagnetic launch,the Shepherd derivative model considering the factors of the pulse cycle condition,temperature,and life is proposed by the Naval University of Engineering.The discharge rate of traditional lithium-ion batteries does not exceed 10C,while that for electromagnetic launch reaches 60C.The continuous pulse cycle condition of ultra-large discharging rate causes many unique electrochemical reactions inside the cells.The traditional model cannot accurately describe the discharge characteristics of the battery.The accurate battery theoretical model is an important basis for system efficiency calculation,precise discharge control,and remaining capacity prediction.To this purpose,an experimental platform for electromagnetic launch is built,and discharge characteristics of the battery under different rate,temperature,and life decay are measured.Through the experimental test and analysis,the reason that the traditional model cannot accurately characterize the large-rate discharge process is analyzed.And a novel battery theoretical model is designed with the help of genetic algorithm,which is integrated with the electromagnetic launch topology.Numerical simulation is compared with the experimental results,which verifies the modeling accuracy for the large-rate discharge.On this basis,a variety of discharge conditions are applied to test the applicability of the model,resulting in better results.Finally,with the continuous cycle-pulse condition in the electromagnetic launch system,the stability and accuracy of the model are confirmed.展开更多
LiFePO4/C composites with good rate capability and high energy density were prepared by adding sugar to the synthetic precursor. A significant improvement in electrode performance was achieved. The resulting carbon co...LiFePO4/C composites with good rate capability and high energy density were prepared by adding sugar to the synthetic precursor. A significant improvement in electrode performance was achieved. The resulting carbon contents in the sample 1 and sample 2 are 3.06% and 4.95%(mass fraction), respectively. It is believed that the synthesis of LiFePO4 with sugar added before heating is a good method because the synthesized particles having uniform small size are covered by carbon. The performance of the cathodes was evaluated using coin cells. The samples were characterized by X-ray diffraction and scanning electron microscope observation. The addition of carbon limits the particles size growth and enables high electron conductivity. The LiFePO4/C composites show very good electrochemical performance delivering about 142 mAh/g specific capacity when being cycled at the C/10 rate. The capacity fade upon cycling is very small.展开更多
以磷酸铁锂电池为研究对象,综合考虑梯次利用比例、使用周期及电池容量等因素,设定不同梯次利用场景,采用生命周期评价方法量化退役动力电池在梯次利用及后续报废处置阶段的环境影响,并对不同梯次利用率情景下的碳减排量进行分析.结果表...以磷酸铁锂电池为研究对象,综合考虑梯次利用比例、使用周期及电池容量等因素,设定不同梯次利用场景,采用生命周期评价方法量化退役动力电池在梯次利用及后续报废处置阶段的环境影响,并对不同梯次利用率情景下的碳减排量进行分析.结果表明,与直接再生利用相比,储能、通信基站、低速电源三种梯次利用场景均表现为环境效益.其中,储能场景环境效益最大,其在气候变化、化石能源消耗、人体毒性-非致癌、陆地生态毒性指标等环境影响指标上均表现出相对优势.基于电池退役量和梯次利用去向,进一步计算出2023年全年磷酸铁锂电池梯次利用的碳减排量为1.05×10^(8) kg CO_(2)eq.当梯次利用率保持当前水平或以10%增长时,至2030年其全年碳减排量可达1.55×10^(9)kg CO_(2)eq.和5.98×10^(9)kg CO_(2)eq.,梯次利用具有良好的减污降碳环境表现.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB2402001)the Postgraduate Innovation and Entrepreneurship Practice Project of Anhui Province(No.2022cxcysj013)+2 种基金the China Postdoctoral Science Foundation(No.2022T150615)the Fundamental Research Funds for the Central Universities(No.WK5290000002)supported by Youth Innovation Promotion Association CAS(No.Y201768)。
文摘The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.
基金Maoming Science and Technology Special Fund Project(Project No.2019018003).Characteristic Innovation Project of Universities in Guangdong Province(Project No.2018KTSCX147).Science and Technology Program of Maoming City(Project No.2020527).
文摘The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate.
基金Project(Z20160605230001)supported by Hunan Province Non-ferrous Fund Project,China。
文摘Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%.
文摘With accurate battery modeling, circuit designers and automotive control algorithms developers can predict and optimize the battery performance. In this paper, an experimental verification of an accurate model for prismatic high current lithium-iron-phosphate battery is presented. An automotive TSLFP160AHA lithium-iron-phosphate battery bank is tested. The different capacity GBDLFMP60AH battery bank is used to validate the model extracted from the former battery. Effect of current, stacking and SOC upon the battery parameters performance is investigated. Six empirical equations are obtained to extract the prismatic type LiFePO4 model as a function of SOC. Based on comparing the measured and simulated data, a well accuracy of less than 50mV maximum error voltage with 1.7% operating time error referred to the measured data is achieved. The model can be easily modified to simulate different batteries and can be extended for wide ranges of different currents.
基金financially supported by the National Key Research and Development Program(Nos.2019YFC1907801,2019YFC1907803 and 2019YFC1907804)the Natural Science Foundation of Hunan(Nos.2021JJ2020066 and 2020JJ4733)+1 种基金the National Natural Science Foundation of China(No.51904340)the Central South University Innovation-Driven Research Program(No.2023CXQD009)。
文摘The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application.
基金This work was financially supported by the Key-Area Research and Development Program of Guangdong Province,China(No.2020B090919003)the National Natural Science Foundation of China(Nos.51834008,51874040,and U1802253)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-020A3).
文摘The recycling of spent LiFePO_(4)batteries has received extensive attention due to its environmental impact and economic benefit.In the pretreatment process of spent LiFePO_(4)batteries,the separation of active materials and current collectors determines the difficulty of the re-covery process and product quality.In this work,a facile and efficient pretreatment process is first proposed.After only freezing the electrode pieces and immersing them in boiling water,LiFePO_(4)materials were peeled from the Al foil.Then,after roasting under an inert atmosphere and sieving,all the cathode and anode active materials were easily and efficiently separated from the Al and Cu foils.The active materials were subjected to acid leaching,and the leaching solution was further used to prepare FePO_(4)and Li_(2)CO_(3).Finally,the battery-grade FePO_(4)and Li_(2)CO_(3)were used to re-synthesize LiFePO_(4)/C via the carbon thermal reduction method.The discharge capacities of re-synthesized LiFePO_(4)/C cathode were 144.2,139.0,133.2,125.5,and 110.5 mA·h·g−1 at rates of 0.1,0.5,1,2,and 5 C,which satisfies the requirement for middle-end LiFePO_(4)batteries.The whole process is environmental and has great potential for industrial-scale recycling of spent lithium-ion batteries.
基金the Science and Technology Commission of Shanghai Municipality (No. 12nm0503500)the National Science Foundation of China (Nos. 21376148, 11374205)
文摘This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon.
基金financially sponsored by the National Natural Science Foundation of China(Grant No:91534205)
文摘Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePOand directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePOnanorods with the reducing crystal size along the b axis shorten the diffusion distance of Liextraction/insertion, and thus improve the electrochemical properties of LiFePOnanorods. Such prepared LiFePOnanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePOnanorods is supposed to be ascribed to the fast Lidiffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra).
基金Project (No. 61004092) supported by the National Natural ScienceFoundation of China
文摘In this paper,an efficient model structure composed of a second-order resistance-capacitance network and a simply analytical open circuit voltage versus state of charge(SOC) map is applied to characterize the voltage behavior of a lithium iron phosphate battery for electric vehicles(EVs).As a result,the overpotentials of the battery can be depicted using a second-order circuit network and the model parameterization can be realized under any battery loading profile,without a special characterization experiment.In order to ensure good robustness,extended Kalman filtering is adopted to recursively implement the calibration process.The linearization involved in the calibration algorithm is realized through recurrent derivatives in a recursive form.Validation results show that the recursively calibrated battery model can accurately delineate the battery voltage behavior under two different transient power operating conditions.A comparison with a first-order model indicates that the recursively calibrated second-order model has a comparable accuracy in a major part of the battery SOC range and a better performance when the SOC is relatively low.
基金This study was supported by the National Natural Science Foundation of China(Nos.51607187,51877214,51907203,51925704,and 52107235)the Hubei Provincial Natural Science Foundation of China(Nos.2019CFB371 and 2019CFB373)partially by No.12 Special Financial 349 Aid to China Postdoctoral Science Foundation(No.2019T120972).
文摘Due to the large error of the traditional battery theoretical model during large-rate discharge for electromagnetic launch,the Shepherd derivative model considering the factors of the pulse cycle condition,temperature,and life is proposed by the Naval University of Engineering.The discharge rate of traditional lithium-ion batteries does not exceed 10C,while that for electromagnetic launch reaches 60C.The continuous pulse cycle condition of ultra-large discharging rate causes many unique electrochemical reactions inside the cells.The traditional model cannot accurately describe the discharge characteristics of the battery.The accurate battery theoretical model is an important basis for system efficiency calculation,precise discharge control,and remaining capacity prediction.To this purpose,an experimental platform for electromagnetic launch is built,and discharge characteristics of the battery under different rate,temperature,and life decay are measured.Through the experimental test and analysis,the reason that the traditional model cannot accurately characterize the large-rate discharge process is analyzed.And a novel battery theoretical model is designed with the help of genetic algorithm,which is integrated with the electromagnetic launch topology.Numerical simulation is compared with the experimental results,which verifies the modeling accuracy for the large-rate discharge.On this basis,a variety of discharge conditions are applied to test the applicability of the model,resulting in better results.Finally,with the continuous cycle-pulse condition in the electromagnetic launch system,the stability and accuracy of the model are confirmed.
文摘LiFePO4/C composites with good rate capability and high energy density were prepared by adding sugar to the synthetic precursor. A significant improvement in electrode performance was achieved. The resulting carbon contents in the sample 1 and sample 2 are 3.06% and 4.95%(mass fraction), respectively. It is believed that the synthesis of LiFePO4 with sugar added before heating is a good method because the synthesized particles having uniform small size are covered by carbon. The performance of the cathodes was evaluated using coin cells. The samples were characterized by X-ray diffraction and scanning electron microscope observation. The addition of carbon limits the particles size growth and enables high electron conductivity. The LiFePO4/C composites show very good electrochemical performance delivering about 142 mAh/g specific capacity when being cycled at the C/10 rate. The capacity fade upon cycling is very small.
文摘以磷酸铁锂电池为研究对象,综合考虑梯次利用比例、使用周期及电池容量等因素,设定不同梯次利用场景,采用生命周期评价方法量化退役动力电池在梯次利用及后续报废处置阶段的环境影响,并对不同梯次利用率情景下的碳减排量进行分析.结果表明,与直接再生利用相比,储能、通信基站、低速电源三种梯次利用场景均表现为环境效益.其中,储能场景环境效益最大,其在气候变化、化石能源消耗、人体毒性-非致癌、陆地生态毒性指标等环境影响指标上均表现出相对优势.基于电池退役量和梯次利用去向,进一步计算出2023年全年磷酸铁锂电池梯次利用的碳减排量为1.05×10^(8) kg CO_(2)eq.当梯次利用率保持当前水平或以10%增长时,至2030年其全年碳减排量可达1.55×10^(9)kg CO_(2)eq.和5.98×10^(9)kg CO_(2)eq.,梯次利用具有良好的减污降碳环境表现.