期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Lacustrine sedimentary responses to earthquakes—soft-sediment deformation structures since late Pleistocene:A review of current understanding 被引量:3
1
作者 Long Guo Zhongtai He Linlin Li 《Earthquake Research Advances》 CSCD 2023年第2期46-53,共8页
The traces left by earthquakes in lacustrine sediments are studied to determine the occurrence of ancient earthquakes by identifying seismically induced soft-sediment deformation structures(SSDS).Dating can help recon... The traces left by earthquakes in lacustrine sediments are studied to determine the occurrence of ancient earthquakes by identifying seismically induced soft-sediment deformation structures(SSDS).Dating can help reconstruct the relative frequency of earthquakes.Identifying seismically induced seismites,which carry abundant seismic information from numerous SSDS,is both critical and challenging.Studying the deformation mechanism of SSDS and learning about the common criteria of seismically induced SSDS improve the identification of earthquake triggers.With better research into SSDS,seismic events can be effectively captured,and temporal constraints can be carried out by 14C dating and optically stimulated luminescence(OSL)dating to identify and date the occurrence of ancient earthquakes.The present contribution primarily addresses the meaning and mechanism of SSDS and their relationship with earthquake magnitude as well as the common criteria of the SSDS induced by earthquakes. 展开更多
关键词 soft-sediment deformation structures Lacustrine sediments EARTHQUAKES LIQUEFACTION
下载PDF
Earthquake-induced Soft-sediment Deformation Structures in the Dengfeng Area,Henan Province,China:Constraints on Qinling Tectonic Evolution during the Early Cambrian 被引量:2
2
作者 YANG Wentao WANG Min QI Yong'an 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期1835-1846,共12页
Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist ... Soft-sediment deformation structures are abundant in the Cambrian Zhushadong and Mantou formations of the Dengfeng area, Henan Province, China. Soft-sediment deformation structures of the Zhushadong Formation consist of fluidized deformation, synsedimentary faults, seismo-folds and plastic deformation; the Mantou Formation is dominated by small-scale horst faults, intruded dikes, fluidized veins, and seismo-cracks. These structures are demonstrated to be earthquake-related by analysis of trigger mechanisms, and may indicate the activity of the Qinling tectonic belt during the early Cambrian. Furthermore, the assemblages of soft-sediment deformation structures altered with time: large-scale, intense deformation in the Zhushadong Formation alters to small-scale, weak deformation in the Mantou Formation. This striking feature may have been caused by changes in hypocentral depth from deep-focus to shallow-focus earthquakes, indicating that the Qinling tectonic belt developed from the subduction of the Shangdan Ocean to the extension of the Erlangping back-arc basin. This study suggests that soft-sediment deformation structures can be used to reveal the activity of a tectonic belt, and, more importantly, changes in deformation assemblages can track the evolution of a tectonic belt. 展开更多
关键词 soft-sediment deformation structures SEISMITES Qinling tectonic belt Cambrian Southern North China Block
下载PDF
A Preliminary Study on the Soft–Sediment Deformation Structures in the Late Quaternary Lacustrine Sediments at Tashkorgan, Northeastern Pamir, China 被引量:11
3
作者 LIANG Lianji DAI Fuchu +1 位作者 JIANG Hanchao ZHONG Ning 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第4期1574-1591,共18页
This study identified soft-sediment deformation structures (SSDS) of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan, northeastern Pamir. The observed deformation stru... This study identified soft-sediment deformation structures (SSDS) of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan, northeastern Pamir. The observed deformation structures include sand dykes, liquefied diapir and convolute structures, gravity induced SSDS, and thixotropic pillar and tabular structures. We conducted a preliminary study on the morphology, formation and trigger mechanisms of pillar and tabular structures formed by liquefaction of underlying coarse sand and thixotropy of the upper silty clay. The regional tectonic setting and distribution of lacustrine strata indicate that the most probable trigger for the SSDS in lacustrine sediments was seismic activity, with an approximate earthquake magnitude of M〉6.0; the potential seismogenic fault is the southern part of the Kongur normal fault extensional system. AMS ^4C dating results indicate that the SSDS were formed by seismic events occurring between 26050±100 yrBP and 22710±80 yrBP, implying intense fault activity in this region during the late Pleistocene. This study provides new evidence for understanding tectonic activity and regional geodynamics in western China. 展开更多
关键词 soft-sediment deformation structures lacustrine sediment PAMIR LIQUEFACTION THIXOTROPY paleo-seismicity
下载PDF
Last Deglacial Soft-Sediment Deformation at Shawan on the Eastern Tibetan Plateau and Implications for Deformation Processes and Seismic Magnitudes 被引量:9
4
作者 ZHONG Ning JIANG Hanchao +4 位作者 LI Haibing XU Hongyan SHI Wei ZHANG Siqi WEI Xiaotong 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2019年第2期430-450,共21页
The eastern margin of the Tibetan Plateau is characterized by frequent earthquakes; however, research of paleo-earthquakes in the area has been limited^ owing to the alpine topography and strong erosion. Detailed inve... The eastern margin of the Tibetan Plateau is characterized by frequent earthquakes; however, research of paleo-earthquakes in the area has been limited^ owing to the alpine topography and strong erosion. Detailed investigations of soft-sediment deformation(SSD) structures are valuable for understanding the trigger mechanisms, deformation processes, and the magnitudes of earthquakes that generate such structures, and help us to understand tectonic activity in the region. To assess tectonic activity during the late Quaternary, we studied a well-exposed sequence of Shawan lacustrine sediments, 7.0 m thick, near Lake Diexi in the upper reaches of the Minjiang River. Deformation is recorded by both ductile structures(load casts, flame structures,pseudonodules, ball-and-pillow structures, and liquefied convolute structures) and brittle structures(liquefied breccia, and microfaults). Taking into account the geodynamic setting of the area and its known tectonic activity, these SSD structures can be interpreted in terms of seismic shocks. The types and forms of the structures,the maximum liquefaction distances, and the thicknesses of the horizons with SSD structures in the Shawan section indicate that they record six strong earthquakes of magnitude 6-7 and one with magnitude >7. A recent study showed that the Songpinggou fault is the seismogenic structure of the 1933 Ms7.5 Diexi earthquake. The Shawan section is located close to the junction of the Songpinggou and Minjiang faults, and records seven earthquakes with magnitudes of ?7. We infer,therefore, that the SSD structures in the Shawan section document deglacial activity along the Songpinggou fault. 展开更多
关键词 lacustrine sequence soft-sediment deformation(ssd) deformation process earthquake magnitude Shawan eastern Tibetan Plateau
下载PDF
Earthquake-related Tectonic Deformation of Soft-sediments and Its Constraints on Basin Tectonic Evolution 被引量:13
5
作者 LU Hongbo ZHANG Yuxu +1 位作者 ZHANG Qiling XIAO Jiafei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第5期724-732,共9页
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolu... The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle. 展开更多
关键词 earthquake tectonic deformation of soft-sediments syn-sedimentary extension structure syn-compression structure tectonic evolution of basins
下载PDF
The Seismic Induced Soft Sediment Deformation Structures in the Middle Jurassic of Western Qaidamu Basin 被引量:4
6
作者 LI Yong SHAO Zhufu +2 位作者 MAO Cui YANG Yuping LIU Shengxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期979-988,共10页
Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, ... Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, such as convoluted bedding, liquefied sand veins, load and flame structures, slump structures and sliding-overlapping structures. Based on their genesis, soft-sediment deformation structures can be classified as three types: seismic induced structures, vertical loading structures, and horizontal shear structures. Based on their geometry and genesis analysis, they are seismic-induced structures. According to the characteristics of convoluted bedding structures and liquefied sand veins, it can be inferred that there were earthquakes greater than magnitude 6 in the study area during the middle Jurassic. Furthermore, the study of the slump structures and sliding- overlapping structures indicates that there was a southeastern slope during the middle Jurassic. Since the distance from the study area to the Altyn Mountain and the Altyn fault is no more than 10km, it can be also inferred that the Altyn Mountain existed then and that the AItyn strike-slip fault was active during the middle Jurassic. 展开更多
关键词 soft-sediments deformation structure sliding-overlapping structure paleoseismology AItyn strike-slip fault
下载PDF
Global case studies of soft-sediment deformation structures(SSDS): Definitions,classifications, advances, origins, and problems 被引量:14
7
作者 G.Shanmugam 《Journal of Palaeogeography》 SCIE CSCD 2017年第4期251-320,共70页
Soft-sediment deformation structures(SSDS)have been the focus of attention for over 150 years.Existing unconstrained definitions allow one to classify a wide range of features under the umbrella phrase"SSDS".As a ... Soft-sediment deformation structures(SSDS)have been the focus of attention for over 150 years.Existing unconstrained definitions allow one to classify a wide range of features under the umbrella phrase"SSDS".As a consequence,a plethora of at least 120 different types of SSDS(e.g.,convolute bedding,slump folds,load casts,dish-and-pillar structures,pockmarks,raindrop imprints,explosive sandegravel craters,clastic injections,crushed and deformed stromatolites,etc.)have been recognized in strata ranging in age from Paleoproterozoic to the present time.The two factors that control the origin of SSDS are prelithification deformation and liquidization.A sedimentological compendium of 140 case studies of SSDS worldwide,which include 30 case studies of scientific drilling at sea(DSDP/ODP/IODP),published during a period between 1863and 2017,has yielded at least 31 different origins.Earthquakes have remained the single most dominant cause of SSDS because of the prevailing"seismite"mindset.Selected advances on SSDS research are:(1)an experimental study that revealed a quantitative similarity between raindrop-impact cratering and asteroid-impact cratering;(2)IODP Expedition 308 in the Gulf of Mexico that documented extensive lateral extent(〉12 km)of mass-transport deposits(MTD)with SSDS that are unrelated to earthquakes;(3)contributions on documentation of pockmarks,on recognition of new structures,and on large-scale sediment deformation on Mars.Problems that hinder our understanding of SSDS still remain.They are:(1)vague definitions of the phrase"soft-sediment deformation";(2)complex factors that govern the origin of SSDS;(3)omission of vital empirical data in documenting vertical changes in facies using measured sedimentological logs;(4)difficulties in distinguishing depositional processes from tectonic events;(5)a model-driven interpretation of SSDS(i.e.,earthquake being the singular cause);(6)routine application of the genetic term"seismites"to the"SSDS",thus undermining the basic tenet of process sedimentology(i.e.,separation of interpretation from observation);(7)the absence of objective criteria to differentiate 21 triggering mechanisms of liquefaction and related SSDS;(8)application of the process concept"high-density turbidity currents",a process that has never been documented in modern oceans;(9)application of the process concept"sediment creep"with a velocity connotation that cannot be inferred from the ancient record;(10)classification of pockmarks,which are hollow spaces(i.e.,without sediments)as SSDS,with their problematic origins by fluid expulsion,sediment degassing,fish activity,etc.;(11)application of the Earth's climate-change model;and most importantly,(12)an arbitrary distinction between depositional process and sediment deformation.Despite a profusion of literature on SSDS,our understanding of their origin remains muddled.A solution to the chronic SSDS problem is to utilize the robust core dataset from scientific drilling at sea(DSDP/ODP/IODP)with a constrained definition of SSDS. 展开更多
关键词 soft-sediment deformation structures(ssds Prelithification deformation Liquidization Pockmarks Impact cratering Scientific drilling
原文传递
Researches of soft-sediment deformation structures and seismites in China—A brief review 被引量:16
8
作者 Zeng-Zhao Feng Zhi-Dong Bao +1 位作者 Xiu-Juan Zheng Yuan Wang 《Journal of Palaeogeography》 SCIE CSCD 2016年第4期311-317,共7页
During the past 30 years (1987-2016), a great progress has been made in researches of soft-sediment deformation structures (SSDS), seismites and pataeoearthquakes in China. However, the research thought of this ac... During the past 30 years (1987-2016), a great progress has been made in researches of soft-sediment deformation structures (SSDS), seismites and pataeoearthquakes in China. However, the research thought of this academic fietd is not open enough. It is atmost with one viewpoint or one voice, i.e., atmost art the papers pubtished in journals of China considered the layers with SSDS as seismites. On the other hand, the authors are very glad to learn that the professors and students of China University of Petroleum (East China) have proposed different academic viewpoints on the origin of SSDS in Lingshan Istand, Qingdao, Shandong Province, China. It is a very active academic atmosphere. The authors' ideas are as follows: (1) The SSDS are sedimentary structures with multi-origin. The term "SSDS" is a good sedimentary and geological term and shoutd be utilized continuat[y. (2) The term "seismites" is a term which is definitety assigned to the layers with SSDS induced by earthquakes. It is one type of the tayers with SSDS. It is not equal to SSDS. (3) Some geotogists suggested obsoleting the term "seismites". These suggestions are rational However, since the term "seismites" has been utilized for a long time in China and worldwide, to obsolete this term should be discussed and agreement should be acquired from numerous geologists in China and worldwide. It may be suitable that let the geological practice decide whether to obsolete it or not. (4) Hopefully, further progress will be made in the researches of SSDS. 展开更多
关键词 soft-sediment deformation structures (ssds Multi-origin SEISMITES Pataeoearthquake Ling-shan Island China
原文传递
Typical earthquake-induced soft-sediment deformation structures in the Mesoproterozoic Wumishan Formation, Yongding River Valley, Beijing, China and interpreted earthquake frequency 被引量:10
9
作者 Su Dechen Sun Aiping 《Journal of Palaeogeography》 SCIE 2012年第1期71-89,共19页
The Mesoproterozoic Wumishan Formation, composed of dolomite is a widely distributed stratigraphic unit in the Beijing area. It was formed over a long period of time in the Yan-Liao aulacogen, a stable peritidal envir... The Mesoproterozoic Wumishan Formation, composed of dolomite is a widely distributed stratigraphic unit in the Beijing area. It was formed over a long period of time in the Yan-Liao aulacogen, a stable peritidal environment that was ideal for recording earthquakes in the form of soft-sediment deformation structures (SSDS). Numerous examples occur in the upper part of the Wumishan Formation, along the Yongding River Valley. In addition, brittle structures include intrastratal fault and seismically cracked breccias. The soft-sediment deformation structures include liquefied features (diapirs, clastic dykes, convolute bedding), compressional deformation features (accordion folds, plate-spine breccias, mound-and-sag structures), and extensional plastic features (loop-bedding). Based on the regional geological setting and previous research, movements along the main axial fault of the Yan-Liao aulacogen are considered as the triggers for earthquakes since the Early Mesoproterozoic. The number and distribution of the SSDS suggest the major earthquake frequency in the Wumishan Formation of 20 to 32 thousand years. 展开更多
关键词 soft-sediment deformation structures MESOPROTEROZOIC Wumishan Formation Yongding River valley China earthquake frequency
原文传递
Soft-sediment deformation structures related to volcanic earthquakes of the Lower Cretaceous Qingshan Group in Lingshan Island, Shandong Province, East China 被引量:2
10
作者 Yao-qi Zhou Tian-Ming Peng +5 位作者 Teng-Fei Zhou Zhen--Kai Zhang Hui Tian Wen-Dong Liang Ting Yu Li-Fu Sun 《Journal of Palaeogeography》 SCIE CSCD 2017年第2期162-181,共20页
The study on soft-sediment deformation structures(SSDS) of Lingshan Island has been one of the hot topics of sedimentology researches in China in recent years,and SSDS developed in turbidite system in the Laiyang Grou... The study on soft-sediment deformation structures(SSDS) of Lingshan Island has been one of the hot topics of sedimentology researches in China in recent years,and SSDS developed in turbidite system in the Laiyang Group are widely known by domestic researchers.However,few studies were conducted on the SSDS in fan delta system in the Qingshan Group,Lingshan Island.This study analyzes the classification and characteristics of SSDS especially their lithofacies association and tithologic characteristics through field outcrops investigation and thin section analysis as well.A conclusion was acquired that the paleoenvironment was a fan delta system with occurrence of several volcanic eruptions,where the water became gradually shallower.The SSDS types in the Qingshan Group includes load and flame structure,ball and pillow structure,waterescape structure,hydroplastic deformation structure,plastic sandstone breccia structure,volcanic drop stone and V-shaped ground fissure mainly caused by volcanic earthquakes of three types:(1)seismic waves,(2)gravity and inertia effect of pyroclastic flows,(3)instant differential air pressure;which is different from slumping and tectonic earthquakes occurred in the Laiyang Group.In addition,with the lithofacies association analysis between pyroclastic flow and SSDS beds,a distribution model of SSDS related to volcanic earthquakes can be established:SSDS types changed gradually with their distance further away from the volcanic activity core.Brittle deformation which was common in the proximal zone disappeared gradually;liquefied and plastic SSDS continued to dominate in the medial zone;and slightly liquefied SSDS were developed in the distal zone.Meanwhile,the scale and size of SSDS is negatively correlated with the distance of SSDS depositional locations from the volcanic vent. 展开更多
关键词 Lingshan Island Qingshan Group Yangjiaodong Section soft-sediment deformation structures Volcanic earthquake Early Cretaceous
原文传递
Origin of soft-sediment deformation structures in Nihewan Basin 被引量:1
11
作者 De-Chen Su Ai-Ping Sun +2 位作者 Zhao-Li Li Song-Yong Chen Zhen-Jie Wu 《Journal of Palaeogeography》 SCIE CSCD 2022年第3期332-359,共28页
The Nihewan Basin is a rift basin at the junction of northern Shanxi Province and northwestern Hebei Province in north China.The basin is known for its rich paleontological fossils and ancient human remains.There are ... The Nihewan Basin is a rift basin at the junction of northern Shanxi Province and northwestern Hebei Province in north China.The basin is known for its rich paleontological fossils and ancient human remains.There are also abundant soft-sediment deformation structures(SSDS)in the thick lacustrine sediments.Previously,most SSDS have been interpreted as ice-edge features or ignored entirely.Recently,the authors have carried out several field surveys in the Nihewan Basin and found that many SSDS are sandwiched between normal lacustrine strata at multiple sections.In the excavation pit at the 10th Locality of Maliang Site(ML10),10 horizontal SSDS layers and two vertically developed geological features have been identified.Based on genesis analysis and related criteria,these features are divided into two categories:cryoturbation-triggered SSDS and earthquake-triggered SSDS.Among them,a special type of ancient ice-wedge pseudomorph(SSDS-8)of ML10 is recognized in the basin for the first time.The other 9 horizontal SSDS are mainly caused by earthquake-triggered liquefaction and slumping.They can be further divided into 14 seismic event layers.These findings indicate that the tectonic activity in the Nihewan Basin is very strong and frequent,and there were cold periods in the geological history of the basin.At the same time,the SSDS with distinct morphological characteristics and stable horizontal distribution in the basin can be used as an important indicator of stratigraphic correlation. 展开更多
关键词 Nihewan Basin soft-sediment deformation structures(ssds) PALEOEARTHQUAKE Freezing-and-thawing Ice-wedge Palaeolithic site
原文传递
Soft-sediment deformation structures in the Mesoproterozoic Kaimur Sandstone,Vindhyan Supergroup(Central India),and their seismotectonic implications
12
作者 Jayanta Kumar Pati Anuj Kumar Singh 《Journal of Palaeogeography》 SCIE CSCD 2023年第3期463-486,共24页
The unequivocal identification of soft-sediment deformation structures(SSDS)is a significant attribute to constrain the effect of transient geological events in the spatio-temporal evolution of ancient sedimentary bas... The unequivocal identification of soft-sediment deformation structures(SSDS)is a significant attribute to constrain the effect of transient geological events in the spatio-temporal evolution of ancient sedimentary basins.This paper reports and discusses,for the first time,the occurrence of several cm-to dm-scale SSDS within sandstone successions of the Mesoproterozoic Kaimur Group(Vindhyan Supergroup),exposed at the Hanumandhara Hill of Chitrakoot-Satna border region,Madhya Pradesh State,India.The SSDS are confined to a deformed interval comprising seven individual sedimentary units of variable composition and texture,which are sandwiched between nearly horizontally undeformed sandstone beds.The SSDS consist of load structures(load casts,flame structures,pseudonodules and ball-and-pillow structures),contorted lamination,convolute lamination,boudins and pinch-and-swell structures,deformed cross-stratification,slump structures,clastic injections,fluid escape structures,and syn-sedimentary fractures/faults.The pre-sent study suggests that the formation of these SSDS is essentially related to a combination of processes(gravitational instability,liquefaction,fluidization,and fluid escape)predominantly induced by seismic shocks.In addition,the restricted occurrence of fractures/faults in these deformed layers emphasizes the passage of seismically-induced Rayleigh waves.Considering the observed types of SSDS,their lateral homo-geneity and geographic distribution along with the geodynamic framework of the Vindhyan Basin,the whole area can be tentatively attributed to having experienced moderate-to high-magnitude(M≥5)seismicity.The present study combined with earlier reports of seismically-induced SSDS,from other regionally disposed formations belonging to the Lower(e.g.,Kajrahat Limestone,Chopan Porcellanite,Koldaha Shale,Rohtas Limestone,and Glauconitic Sandstone of the Semri Group)and Upper(e.g.,Bhander Limestone of the Bhander Group)Vindhyan Supergroup,respectively,provides evidence for the constant regional-scale seismo-tectonic activity within the Paleo-Mesoproterozoic Vindhyan Basin.Importantly,this observation further suggests that the intracratonic basins can be active tectonically contrary to the earlier propositions. 展开更多
关键词 soft-sediment deformation structures ssds SEISMITES Kaimur Group Vindhyan Basin Sand-stone Central India
原文传递
A brief review on 7 papers from the special issue of “The environmental significance of soft-sediment deformation” of the Sedimentary Geology 344(2016) 被引量:4
13
作者 Zeng-Zhao Feng 《Journal of Palaeogeography》 SCIE CSCD 2017年第4期243-250,共8页
From the viewpoint of origins of soft-sediment deformation structures(SSDS), 7 papers(Ito et al.,2016; Jiang et al., 2016; Lunina and Gladkov, 2016; Moretti et al., 2016; Rana et al., 2016; Rodríguez-Pascua et... From the viewpoint of origins of soft-sediment deformation structures(SSDS), 7 papers(Ito et al.,2016; Jiang et al., 2016; Lunina and Gladkov, 2016; Moretti et al., 2016; Rana et al., 2016; Rodríguez-Pascua et al., 2016; Wheatley et al., 2016) selected from the special issue of "The environmental significance of softsediment deformation" of the Sedimentary Geology 344(2016) were reviewed.(1) The first paper(according to the published order) by Moretti et al. is a general review and introduction of this special issue. This special issue has made an important contribution to the study of sedimentary environments.(2) The fourth paper by Rodríguez-Pascua et al. is an excellent case study. All evidence of earthquake in this paper is reliable. The old Roman City(adjacent to Madrid, the capital of Spain) was definitely destroyed by an earthquake. This paper solved the problem that the archaeologists have not solved yet.(3) The 19 thpaper by Rana et al. is another excellent case study. It demonstrated that SSDS in the youngest modern sediments in the seismically active area, i.e., the Alaknanda Valley, Garhwal Himalaya, India, are of non-seismic origin, but with typically sedimentary origin. All evidence of sedimentary origin of SSDS in the study area is reliable.(4) The second paper by Lunina and Gladkov stated that SSDS(mainly clastic dikes) in epicentral areas of the recent earthquakes in southern Siberia were originated by earthquakes and that the clastic dikes are the most reliable indicators in the epicentral areas of earthquakes. This conclusion is right. However, it is not accurate to consider all clastic injections as "in-situ earthquake structures" in anywhere, because the clastic injections are with multiple origins.(5) The third paper by Wheatley et al. comprehensively stated the clastic pipes of the Jurassic in the Colorado Plateau, USA. However, the principal origin of the clastic pipes(columns) was possibly not originated by "palaeoseismic controls", but by "tectonic controls" or "tectonic uplifts".(6) The 10^(th) paper by Jiang et al.proposed that 6 types of SSDS of the Lixian Section in eastern Tibetan Plateau, i.e., in a tectonically and seismically active area, were originated by earthquakes. However, the evidence of seismic origin is not sufficient. Therefore, the origins of SSDS in the Lixian Section are worthy to be further discussed.(7) The"injectites" and "extrudites" in a Late Pliocene basin on the Boso Peninsula, Japan, from the 24^(th) paper by Ito et al., are non-SSDS and their origin is unreliable.The above viewpoints may be inappropriate. Criticisms and corrections are welcome.This paper is not only the author's brief review on 7 papers selected from the special issue of the Sedimentary Geology 344(2016), but also an invitation to geologists worldwide to write papers for a new special issue of "The origins of SSDS" of the Journal of Palaeogeography which is planned to be published in 2018. 展开更多
关键词 soft-sediment deformation structures(ssds Sedimentary environments Origins Contradictions Review Invitation
原文传递
中国软沉积物变形构造及地震岩研究简评 被引量:30
14
作者 冯增昭 鲍志东 +1 位作者 郑秀娟 王媛 《古地理学报》 CAS CSCD 北大核心 2017年第1期7-12,共6页
近30年(1987—2016)来,中国的软沉积物变形构造、地震岩、震积岩及古地震研究,取得了很大的进展和成绩。但是,在国内中文期刊中已发表的约140篇文章和已出版的一些专著中,几乎都把具软沉积物变形构造的岩层当作地震岩。可喜的是,中国石... 近30年(1987—2016)来,中国的软沉积物变形构造、地震岩、震积岩及古地震研究,取得了很大的进展和成绩。但是,在国内中文期刊中已发表的约140篇文章和已出版的一些专著中,几乎都把具软沉积物变形构造的岩层当作地震岩。可喜的是,中国石油大学(华东)的老师们和学生们,对山东青岛灵山岛下白垩统中的软沉积物变形构造的研究,却有多种不同的观点,呈现出了一种活跃的学术气氛。笔者等的看法是:(1)软沉积物变形构造是一种沉积构造,它有多种成因,它是一个很好的沉积学和地质学术语,应继续地和更广泛地使用下去。(2)地震岩是专指由地震引起的具软沉积物变形构造的岩层,它是具多成因的软沉积物变形构造的岩层的一种,不能把所有的具软沉积构造的岩层都当作地震岩。有的地质学家建议废弃地震岩这一术语。(3)震积岩是"seismites"(地震岩)的误译,不宜再继续使用。(4)由于地震岩和震积岩这两个术语在国内外已使用多年,要废弃它们或不再继续使用它们,应得到国内外的多数地质学家的同意才行。 展开更多
关键词 软沉积变形构造 地震岩 震积岩 灵山岛 “多成因的软沉积物变形构造及地震岩”专题研讨会
下载PDF
川西南地区荥经坳陷早中奥陶世地震事件记录及意义 被引量:2
15
作者 熊小辉 王剑 +3 位作者 汪正江 熊国庆 邓奇 杨平 《古地理学报》 CAS CSCD 北大核心 2018年第5期815-824,共10页
川西南荥经坳陷开展了多口页岩气调查井及参数井(CYY1,YD1和YD2)的钻探。通过大量岩心观察和沉积构造特征分析,在中下奥陶统识别出大量软沉积变形构造及脆性变形构造,包括重荷模、火焰构造、球—枕构造等负载相关构造,液化砂岩脉、液化... 川西南荥经坳陷开展了多口页岩气调查井及参数井(CYY1,YD1和YD2)的钻探。通过大量岩心观察和沉积构造特征分析,在中下奥陶统识别出大量软沉积变形构造及脆性变形构造,包括重荷模、火焰构造、球—枕构造等负载相关构造,液化砂岩脉、液化泥砾等液化构造,以及布丁构造、卷曲变形、震裂缝、震裂角砾、同沉积断层等,具有典型地震导致的同生及准同生构造变形特征。记录显示至少发生了2次地震事件,并引发海啸以及多次余震。该区震积岩的发现表明早中奥陶世曾发生明显的构造活动,是加里东早期都匀运动一次构造运动幕的响应,这对川中隆起具有重要意义。构造运动导致荥经坳陷周缘断裂活动并引发地震。地震对沉积地层的改造极大地改善了研究区油气储集层条件,更利于油气的运移。 展开更多
关键词 震积岩 软沉积变形构造 早中奥陶世 加里东运动 都匀运动 荥经坳陷 四川盆地
下载PDF
《地震岩问题》中译本序 被引量:7
16
作者 冯增昭 《古地理学报》 CAS CSCD 北大核心 2017年第1期13-17,共5页
近30年(1987—2016)来,中国的软沉积物变形构造及地震岩研究,取得了很大的进展。但是,其研究思想却欠开放。在这一学术领域,几乎是一种观点,即中国期刊刊出的文章和一些出版的专著,几乎都把软沉积物变形构造当作地震岩。为了扭转这个几... 近30年(1987—2016)来,中国的软沉积物变形构造及地震岩研究,取得了很大的进展。但是,其研究思想却欠开放。在这一学术领域,几乎是一种观点,即中国期刊刊出的文章和一些出版的专著,几乎都把软沉积物变形构造当作地震岩。为了扭转这个几乎是一种学术观点的局面,Feng等(2016)写了一篇文章《中国软沉积物变形构造及地震岩研究简评》,并把这篇文章发送给国内外的多位专家,抛砖引玉,邀请他们为"软沉积物变形构造及地震岩"专题研讨会写文章,在会上宣读论文,对这些文章及这一专题中的问题进行认真的讨论和争鸣。山穆玕教授的《地震岩问题》是我们收到的第1篇文章。此文涵盖了近153年国内外地质学家关于软沉积物变形构造及地震岩的研究成果,参考文献达268篇。这是一篇内容十分丰富并有独到见地的挑战性文章。此文最重要的贡献是对Seilacher(1969)提出的"地震岩"(seismites)这一术语的挑战和否定。中国地质学家把"seismites"译为"震积岩",即由地震和沉积作用引起的具软沉积物变形构造的岩层。这是一个误译的术语。至于"地震岩"(seismites)这一术语是否应该废弃,"震积岩"这一术语是否应该继续使用,应由广大的中外地质学家决定,由地质实践决定。《地震岩问题》的另一个贡献是提出了触动因素和强调液化作用。21种触动因素和2种软沉积物类型奠定了软沉积物变形构造形成过程的理论基础。假如我们能用毛泽东的《矛盾论》的方法,研究有多种矛盾存在的软沉积物变形构造的形成过程,并用全力找出它的主要矛盾,则软沉积物变形构造就可以揭示触动因素的一些信息,即可以揭示软沉积物变形构造成因的一些信息。 展开更多
关键词 软沉积物变形构造 地震岩 震积岩 触动因素 液化作用 软沉积物变形构造的形成过程 主要矛盾
下载PDF
一次成功的专题研讨会:“多成因的软沉积物变形构造及地震岩” 被引量:17
17
作者 冯增昭 《古地理学报》 CAS CSCD 北大核心 2017年第1期1-6,共6页
"多成因的软沉积物变形构造及地震岩"专题研讨会,2016年9月24日在河南焦作河南理工大学承办的第14届全国古地理学及沉积学学术会议期间召开。国内多位专家出席这次研讨会,对软沉积物变形构造、地震岩、震积岩等问题进行讨论... "多成因的软沉积物变形构造及地震岩"专题研讨会,2016年9月24日在河南焦作河南理工大学承办的第14届全国古地理学及沉积学学术会议期间召开。国内多位专家出席这次研讨会,对软沉积物变形构造、地震岩、震积岩等问题进行讨论和争鸣。这是一次十分成功的研讨会,其主要成果是:(1)"多成因的软沉积物变形构造"已为广大地质学家接受。(2)赛拉赫(Seilacher,1969)提出的"地震岩"(seismites)的定义,即"具断层—粒序的岩层可定为地震岩",应该废弃;但现在为广大地质学家所接受的地震岩的定义,即"地震岩是真正由地震引起的具软沉积物变形构造的岩层",则不应废弃,可以保留下来。(3)"地震岩"这个术语应严格地限制在真正由地震引起的具软沉积物变形构造的岩层。(4)"震积岩"是一个误译的术语,不宜继续使用。如果有的地质学家想继续使用这个术语,应对这个术语重新定义,并指明它不是"seismites"(地震岩)的中文译名。(5)碎屑注入体也是多成因的,它不一定是地震岩,更不一定是"原地地震"的标志。(6)本次研讨会的最重要的成果是中国软沉积物变形构造及地震岩研究中的"几乎是一个观点"的局面开始被扭转过来了,呈现出了"百花齐放和百家争鸣"的学术气氛。 展开更多
关键词 多成因的软沉积物变形构造 地震岩 震积岩 碎屑注入体 研讨会 地质实践
下载PDF
鄂尔多斯盆地上三叠统延长组长8段液化柱及相关软沉积物变形 被引量:5
18
作者 贺静 冯胜斌 《地质学报》 EI CAS CSCD 北大核心 2017年第3期645-657,共13页
笔者在鄂尔多斯盆地上三叠统延长组长8段的岩芯中首次识别出液化柱变形构造,本文从三维空间研究其宏观与微观特征。赋存液化柱的长8段的多个层位的岩芯中均发现有软沉积物变形构造,如液化流动变形、水塑性变形及脆性变形等,广泛分布于... 笔者在鄂尔多斯盆地上三叠统延长组长8段的岩芯中首次识别出液化柱变形构造,本文从三维空间研究其宏观与微观特征。赋存液化柱的长8段的多个层位的岩芯中均发现有软沉积物变形构造,如液化流动变形、水塑性变形及脆性变形等,广泛分布于盆地不同地区的钻井岩芯中,并在垂向上重复出现。结合长8段的沉积环境和构造背景分析,笔者认为长8段的液化柱与软沉积物变形系地震触发。晚三叠世鄂尔多斯盆地以南秦岭地震造山运动与盆地沉陷是长8段软沉积物变形的构造背景。根据地震触发软沉积物变形构造的时空分布,鄂尔多斯盆地在长8段沉积的地质时期已受控于秦岭造山带动力机制的控制,而不是传统认为的仅在长8段沉积末期。 展开更多
关键词 鄂尔多斯盆地 上三叠统长8段 液化柱 软沉积物变形 秦岭造山带
下载PDF
地震岩问题 被引量:7
19
作者 山穆玕 冯增昭(译) 刘敏(译) 《古地理学报》 CAS CSCD 北大核心 2017年第1期19-64,共46页
在过去的82年(1931—2013)中,共出现了39个成因术语。在这39个术语中,只有10个是真正沉积成因的(例如浊积岩),其他29个术语都是比较草率地提出的(just jargons;例如地震岩、海啸岩等)。"地震岩"(seismites)这一成因术语是赛拉... 在过去的82年(1931—2013)中,共出现了39个成因术语。在这39个术语中,只有10个是真正沉积成因的(例如浊积岩),其他29个术语都是比较草率地提出的(just jargons;例如地震岩、海啸岩等)。"地震岩"(seismites)这一成因术语是赛拉赫(Seilacher,1969)提出的,它指沉积记录中的古地震。这是一个误用的(misnomer)术语。赛拉赫仅仅根据美国加利福尼亚州的中新统蒙特雷组(Miocene Montery Formation)10m厚的露头观察,就匆忙地提出这个术语。他并未对这个露头进行认真的科学研究。最根本的问题是,地震是一个触动因素(1),并不是一个沉积作用。在古代的沉积记录中,鉴别不出各种触动因素(trigger)(2),因为自然界不能保留触动因素曾经存在过的证据。"软沉积物变形构造"(soft-sediment deformation structures,可简称为SSDS),通常被人们用来作为地震岩的鉴别标志,其实它是"液化作用"(liquefacation)的结果。液化作用可以由21种触动因素中的任何一种引起,其中包括地震(earthquake)、陨石冲击(meteorite impact)、海啸(tsunami)、沉积负载(sediment loading)等。在死海盆地中的角砾碎屑,所谓典型的由地震引起的沉积,实际上是常见的同沉积作用的碎屑流的产物,与地震没有关系。其他类型的SSDS,例如"双向叠层构造"(duplex-like structures)和碎屑注入体(clastic injections),也可以说是同沉积作用的产物,与地震没有关系。世界上广泛分布的砂岩储油层,包括墨西哥湾、北海、挪威海、尼日利亚、赤道几内亚、加逢、孟加拉湾,都表明这些地区的SSDS的第一起因(primary cause)是沉积负载,其证据是可以观察到的和令人信服的。海啸及陨石冲击,都可以形成大量的沉积,例如SSDS的侧向延伸(lateral extent of SSDS),但这些沉积都不能当作地震的鉴别标志。位于印度东部大陆边缘的Krishna-Godavari(KG)盆地中的SSDS,是多种触动因素(1)引起的沉积物的失控和液化作用的结果,即多成因的SSDS。由于这些原因,"地震岩"这个成因术语确实没有什么科学价值,应当废弃。 展开更多
关键词 软沉积物变形构造(ssds 地震岩 地震 陨石冲击 液化作用 碎屑注入体
下载PDF
Advances and Overview of the Study on Paleo-earthquake Events: A Review of Seismites 被引量:17
20
作者 HE Bizhu QIAO Xiufu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1702-1706,I0009,I0010,1707-1746,共47页
The distribution and formation mechanisms of typical identified seismites are analyzed based on various factors from plate tectonic positions, types of sedimentary basins and properties of seismogenic faults to focal ... The distribution and formation mechanisms of typical identified seismites are analyzed based on various factors from plate tectonic positions, types of sedimentary basins and properties of seismogenic faults to focal mechanisms.Especially, structural styles, reserved positions, activity times, formation mechanisms and dynamics of soft-sediment deformation structures triggered by seismic activity are systematically analyzed.According to the genetic types of seismites, we propose 5 categories, including liquefied deformation, thixotropic deformation, hydroplastic deformation, superimposed gravity driving deformation and brittle deformation.Further, based on the main genetic types, composition of sediments and deformation styles, we draw up 35 secondary classifications.To determine paleo-seismic sequences in different times, activities of seismogenic faults, high-resolution tectonic events in one main tectonic movement and paleo-tectonic settings, and to understand the inducing mechanisms of paleo-earthquakes and ecologic environment evolution, researching on seismites are of great significance.Combing multiple approaches to identify the paleoearthquake records, simulating experiments on various soft-sediment deformation structures triggered by different magnitudes of shocking, dating precisely on paleo-seismic events, impacting on paleogeography and biological environment and on energy and resources domain are the frontiers of paleoseismic research. 展开更多
关键词 soft-sediment deformation structure formation mechanism SEISMITES classification paleo-seismicity history and frontier
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部