Growing observations reveal that soft gamma-ray repeaters and anomalous x-ray pulsars are magnetars. Their magnetic fields may achieve 10^14 - 10^15G. We explore the origin of the superstrong magnetic field by conside...Growing observations reveal that soft gamma-ray repeaters and anomalous x-ray pulsars are magnetars. Their magnetic fields may achieve 10^14 - 10^15G. We explore the origin of the superstrong magnetic field by considering the magnetization of the ^3P2 superfluid neutrons inside neutron stars (NSs). By solving the Tolman-Oppenheimer-Volkov equations together with the equation of state adopted by Elgaroy it et al. [Phys. Rev. Lett. 77 (1996) 1428] in the calculation of the neutron pairing gap, we specifically calculate the NS internal structure, the permissible region for ^3P2 superfluid neutrons inside the NS, and the total magnetic moment contributed by the orderly arranged neutron vortexes. The result shows that the induced magnetic field may cover a wide range, which is consistent with the magnetic field predicted by the standard magnetic dipole radiation for pulsar spindown.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10173005, 10273006 and 19935030, and the Doctoral Programme of the Ministry of Education of China.
文摘Growing observations reveal that soft gamma-ray repeaters and anomalous x-ray pulsars are magnetars. Their magnetic fields may achieve 10^14 - 10^15G. We explore the origin of the superstrong magnetic field by considering the magnetization of the ^3P2 superfluid neutrons inside neutron stars (NSs). By solving the Tolman-Oppenheimer-Volkov equations together with the equation of state adopted by Elgaroy it et al. [Phys. Rev. Lett. 77 (1996) 1428] in the calculation of the neutron pairing gap, we specifically calculate the NS internal structure, the permissible region for ^3P2 superfluid neutrons inside the NS, and the total magnetic moment contributed by the orderly arranged neutron vortexes. The result shows that the induced magnetic field may cover a wide range, which is consistent with the magnetic field predicted by the standard magnetic dipole radiation for pulsar spindown.