针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准...针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准则相结合,利用输出误差的非线性饱和特性通过随机梯度下降法更新权重.一方面利用Softplus函数的特点在保证了SP-KFLP算法具有良好的抗脉冲干扰性能的同时提高了其收敛速度;另一方面将低次幂误差的倒数作为权重向量更新公式的系数,利用误差突增使得权重向量不更新的方法来抵制冲激噪声,并对其均方收敛性进行了分析.在系统辨识环境下的仿真表明,该算法很好地兼顾了收敛速度和跟踪性能稳定误差的矛盾,在收敛速度和抗脉冲干扰鲁棒性方面优于核最小均方误差算法、核分式低次幂算法和S型核分式低次幂自适应滤波算法.展开更多
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。展开更多
文摘针对非高斯环境下一般自适应滤波算法性能严重下降问题,本文提出了一种基于Softplus函数的核分式低次幂自适应滤波算法(kernel fractional lower algorithm based on Softplus function,SP-KFLP),该算法将Softplus函数与核分式低次幂准则相结合,利用输出误差的非线性饱和特性通过随机梯度下降法更新权重.一方面利用Softplus函数的特点在保证了SP-KFLP算法具有良好的抗脉冲干扰性能的同时提高了其收敛速度;另一方面将低次幂误差的倒数作为权重向量更新公式的系数,利用误差突增使得权重向量不更新的方法来抵制冲激噪声,并对其均方收敛性进行了分析.在系统辨识环境下的仿真表明,该算法很好地兼顾了收敛速度和跟踪性能稳定误差的矛盾,在收敛速度和抗脉冲干扰鲁棒性方面优于核最小均方误差算法、核分式低次幂算法和S型核分式低次幂自适应滤波算法.
文摘函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。