The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of par...The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.展开更多
Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with ...Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.展开更多
This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and g...This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and grillages. The updated program includes dynamic analysis, which incorporates inertial and damping effects, time-dependent load conditions, and a transient solver with multiple time integration schemes. The software assumes small displacements and linear-elastic material behavior. The paper briefly explains the theoretical basis for these developments and the reorganization of the source code using Object-Oriented Programming (OOP). The updated Graphical User Interface (GUI) allows interactive use of dynamic analysis features and displays new results such as animations, envelope diagrams of internal forces, phase portraits, and the response of degrees-of-freedom in time and frequency domain. The new version was used in a structural dynamics course, and new assignments were elaborated to improve students’ understanding of the subject.展开更多
Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we re...Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate.展开更多
The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the ma...The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.展开更多
Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled inte...Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled interface constructed betweenα-MnO2 and Co3O4 is responsible for the enhanced catalytic activity.The resultantα-MnO2@Co3O4 catalyst exhibits excellent catalytic activity at a T90%(temperature required to achieve a toluene conversion of 90%)of approximately 229℃,which is 47 and 28℃ lower than those of the pureα-MnO2 nanowire and Co3O4-b obtained via pyrolysis of ZIF-67,respectively.This activity is attributed to the increase in the number of surface-adsorbed oxygen species,which accelerate the oxygen mobility and enhance the redox pairs of Mn^4+/Mn^3+ and Co^2+/Co^3+.Moreover,the result of in situ diffuse reflectance infrared Fourier transform spectroscopy suggests that the gaseous oxygen could be more easily activated to adsorbed oxygen species on the surface of α-MnO2@Co3O4 than on that of α-MnO2.The catalytic reaction route of toluene oxidation over theα-MnO2@Co3O4 catalyst is as follows:toluene→benzoate species→alkanes containing oxygen functional group→CO2 and H2O.In addition,the α-MnO2@Co3O4 catalyst shows excellent stability and good water resistance for toluene oxidation.Furthermore,the preparation method can be extended to other 1D MnO2 materials.A new strategy for the development of high-performance catalysts of practical significance is provided.展开更多
Many industrial companies and researchers are looking for more efficient model driven engineering approaches (MDE) in software engineering of manufacturing automation systems (MS) especially for logic control programm...Many industrial companies and researchers are looking for more efficient model driven engineering approaches (MDE) in software engineering of manufacturing automation systems (MS) especially for logic control programming, but are uncertain about the applicability and effort needed to implement those approaches in comparison to classical Programmable Logic Controller?(PLC) programming with IEC 61131-3. The paper summarizes results of usability experiments evaluating UML and SysML as software engineering notations for a MDE applied in the domain of manufacturing systems. Modeling MS needs to cover the domain specific characteristics,?i.e.?hybrid process, real time requirements and communication requirements. In addition the paper presents factors, constraint and practical experience for the development of further usability experiments. The paper gives examples of notational expressiveness and weaknesses of UML and SysML. The appendix delivers detailed master models, representing the correct best suited model, and evaluation schemes of the experiment, which is helpful if setting up own empirical experiments.展开更多
The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct di...The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct distribution diagrams of surface speciation in the SiO_(2)-metal ion-H^(+) system in aqueous solutions.Equilib-rium constants for both surface and solution reactions were introduced in the composition matrix.Surface complexation,surface charge as well as notation results were compared and a good agreement was obtained.Furthermore,flotation mechanisms of quartz activation by common metal ions like Ca^(2+),Mg^(2+),Fe^(2+) are quantitatively discussed based on the surface reaction equilibrium constants.展开更多
The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy...The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.展开更多
Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed ga...Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters includ-ing trap density Dit, trap time constant ιit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).展开更多
The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS)...The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.展开更多
The transfer of Sr^2+ and Ba^2+ ion,facilitated by 18-crown-6 present in the aqueous phase,and of succinylcholine ion at w/nb interface were investigated by semi-differeniial cyclic voltammetry.A good polarographic cu...The transfer of Sr^2+ and Ba^2+ ion,facilitated by 18-crown-6 present in the aqueous phase,and of succinylcholine ion at w/nb interface were investigated by semi-differeniial cyclic voltammetry.A good polarographic curve of succinylcholine ion dissolved in water was obtained in the system of 0.01 mol/l LiCl(w)-0.01mol/l TBATPB(nb).The peak current is directly proportional to the concentration of SC^2+ ion.It can be used for the determination of SC and the detection limit is 1.05×10^-5mol/l,The apparent D^m and D^mb have been estimated.The transfer of Sr^2+ and of Ba^2+ at the interface are facilitated by 18-Crown-6 present in the aqueous phase and the peak current is directly proportional to the concentration of 18-Crown-6 in water.This method can be used for the determination of the complexing agent and for the stability constant of the complex formed in the aqueous phase.All the experimental results are in keeping with the theoretical.展开更多
基金the Deanship of Scientific Research at King Abdulaziz University,Jeddah,Saudi Arabia under the Grant No.RG-12-611-43.
文摘The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.
基金supported by the National Key Research and Development Program of China(No.2019YFC1907801)National Natural Science Foundation of China(No.52174286)+1 种基金the Science and Technology Innovation Program of Hunan Province(2021RC3014)Innovation-Driven Project of Central South University(No.2020CX007)。
文摘Efficient bifunctional catalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are vital for rechargeable Zn-air batteries(ZABs).Herein,an oxygen-respirable sponge-like Co@C–O–Cs catalyst with oxygen-rich active sites was designed and constructed for both ORR and OER by a facile carbon dot-assisted strategy.The aerophilic triphase interface of Co@C–O–Cs cathode efficiently boosts oxygen diffusion and transfer.The theoretical calculations and experimental studies revealed that the Co–C–COC active sites can redistribute the local charge density and lower the reaction energy barrier.The Co@C–O–Cs catalyst displays superior bifunctional catalytic activities with a half-wave potential of 0.82 V for ORR and an ultralow overpotential of 294 mV at 10 mA cm^(−2) for OER.Moreover,it can drive the liquid ZABs with high peak power density(106.4 mW cm^(−2)),specific capacity(720.7 mAh g^(−1)),outstanding long-term cycle stability(over 750 cycles at 10 mA cm^(−2)),and exhibits excellent feasibility in flexible all-solid-state ZABs.These findings provide new insights into the rational design of efficient bifunctional oxygen catalysts in rechargeable metal-air batteries.
文摘This paper introduces a new version of the open-source educational software, LESM (Linear Elements Structure Model), developed in MATLAB for structural analysis of one-dimensional models such as frames, trusses, and grillages. The updated program includes dynamic analysis, which incorporates inertial and damping effects, time-dependent load conditions, and a transient solver with multiple time integration schemes. The software assumes small displacements and linear-elastic material behavior. The paper briefly explains the theoretical basis for these developments and the reorganization of the source code using Object-Oriented Programming (OOP). The updated Graphical User Interface (GUI) allows interactive use of dynamic analysis features and displays new results such as animations, envelope diagrams of internal forces, phase portraits, and the response of degrees-of-freedom in time and frequency domain. The new version was used in a structural dynamics course, and new assignments were elaborated to improve students’ understanding of the subject.
基金financially supported by the National Natural Science Foundation of China(21774041 and 51433003)the China Postdoctoral Science Foundation(2018M640681 and 2019T120632)。
文摘Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate.
基金This research is supported by the National Natural Science Foundation of China (under Grant No.59771014 and No.50071019). The help of the National Advanced Material Open Research Lab of Tsinghua University is gratefully acknowledged.
文摘The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.
文摘Herein,a bottom-down design is presented to successfully fabricate ZIF-derived Co3O4,grown in situ on a one-dimensional(1D)α-MnO2 material,denoted as α-MnO2@Co3O4.The synergistic effect derived from the coupled interface constructed betweenα-MnO2 and Co3O4 is responsible for the enhanced catalytic activity.The resultantα-MnO2@Co3O4 catalyst exhibits excellent catalytic activity at a T90%(temperature required to achieve a toluene conversion of 90%)of approximately 229℃,which is 47 and 28℃ lower than those of the pureα-MnO2 nanowire and Co3O4-b obtained via pyrolysis of ZIF-67,respectively.This activity is attributed to the increase in the number of surface-adsorbed oxygen species,which accelerate the oxygen mobility and enhance the redox pairs of Mn^4+/Mn^3+ and Co^2+/Co^3+.Moreover,the result of in situ diffuse reflectance infrared Fourier transform spectroscopy suggests that the gaseous oxygen could be more easily activated to adsorbed oxygen species on the surface of α-MnO2@Co3O4 than on that of α-MnO2.The catalytic reaction route of toluene oxidation over theα-MnO2@Co3O4 catalyst is as follows:toluene→benzoate species→alkanes containing oxygen functional group→CO2 and H2O.In addition,the α-MnO2@Co3O4 catalyst shows excellent stability and good water resistance for toluene oxidation.Furthermore,the preparation method can be extended to other 1D MnO2 materials.A new strategy for the development of high-performance catalysts of practical significance is provided.
文摘Many industrial companies and researchers are looking for more efficient model driven engineering approaches (MDE) in software engineering of manufacturing automation systems (MS) especially for logic control programming, but are uncertain about the applicability and effort needed to implement those approaches in comparison to classical Programmable Logic Controller?(PLC) programming with IEC 61131-3. The paper summarizes results of usability experiments evaluating UML and SysML as software engineering notations for a MDE applied in the domain of manufacturing systems. Modeling MS needs to cover the domain specific characteristics,?i.e.?hybrid process, real time requirements and communication requirements. In addition the paper presents factors, constraint and practical experience for the development of further usability experiments. The paper gives examples of notational expressiveness and weaknesses of UML and SysML. The appendix delivers detailed master models, representing the correct best suited model, and evaluation schemes of the experiment, which is helpful if setting up own empirical experiments.
文摘The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct distribution diagrams of surface speciation in the SiO_(2)-metal ion-H^(+) system in aqueous solutions.Equilib-rium constants for both surface and solution reactions were introduced in the composition matrix.Surface complexation,surface charge as well as notation results were compared and a good agreement was obtained.Furthermore,flotation mechanisms of quartz activation by common metal ions like Ca^(2+),Mg^(2+),Fe^(2+) are quantitatively discussed based on the surface reaction equilibrium constants.
基金Funded by the National Natural Science Foundation of China (50672089)the Encouraging Foundation for the Scientific Research of the Excellent Young and Middleaged Scientists in Shandong Province(2006BS04034)
文摘The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.
基金Project supported by the National Basic Research Program of China(Grant No.2011CBA00606)
文摘Frequency dependent conductance measurements are implemented to investigate the interface states in Al2O3/A1GaN/GaN metal-oxide-semiconductor (MOS) structures. Two types of device structures, namely, the recessed gate structure (RGS) and the normal gate structure (NGS), are studied in the experiment. Interface trap parameters includ-ing trap density Dit, trap time constant ιit, and trap state energy ET in both devices have been determined. Furthermore, the obtained results demonstrate that the gate recess process can induce extra traps with shallower energy levels at the Al2O3/AlGaN interface due to the damage on the surface of the AlGaN barrier layer resulting from reactive ion etching (RIE).
基金Supported by the National Natural Science Foundation of China under Grant Nos 51337002,51077028,51502063 and 51307046the Foundation of Harbin Science and Technology Bureau of Heilongjiang Province under Grant No RC2014QN017034
文摘The distributions of traps and electron density in the interfaces between polyimide (PI) matrix and Al2O3 nanoparticles are researched using the isothermal decay current and the small-angle x-ray scattering (SAXS) tests. According to the electron density distribution for quasi two-phase mixture doped by spherical nanoparticles, the electron densities in the interfaces of PI/Al2O3 nanocomposite films are evaluated. The trap level density and carrier mobility in the interface are studied. The experimental results show that the distribution and the change rate of the electron density in the three layers of interface are different, indicating different trap distributions in the interface layers. There is a maximum trap level density in the second layer, where the maximum trap level density for the nanocomposite film doped by 25 wt% is 1.054 × 10^22 eV·m^-3 at 1.324eV, resulting in the carrier mobility reducing. In addition, both the thickness and the electron density of the nanocomposite film interface increase with the addition of the doped Al2O3 contents. Through the study on the trap level distribution in the interface, it is possible to further analyze the insulation mechanism and to improve the performance of nano-dielectric materials.
文摘The transfer of Sr^2+ and Ba^2+ ion,facilitated by 18-crown-6 present in the aqueous phase,and of succinylcholine ion at w/nb interface were investigated by semi-differeniial cyclic voltammetry.A good polarographic curve of succinylcholine ion dissolved in water was obtained in the system of 0.01 mol/l LiCl(w)-0.01mol/l TBATPB(nb).The peak current is directly proportional to the concentration of SC^2+ ion.It can be used for the determination of SC and the detection limit is 1.05×10^-5mol/l,The apparent D^m and D^mb have been estimated.The transfer of Sr^2+ and of Ba^2+ at the interface are facilitated by 18-Crown-6 present in the aqueous phase and the peak current is directly proportional to the concentration of 18-Crown-6 in water.This method can be used for the determination of the complexing agent and for the stability constant of the complex formed in the aqueous phase.All the experimental results are in keeping with the theoretical.