Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typical...Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typically possible. These deployment architectures can have significant impacts on system reliability. However, existing reliability estimation approaches are typically limited to certain classes or exclusively concentrate on software reliability, neglecting the influence of hardware resources, software deployment and architectural styles. The selection of an appropriate architectural style has a significant impact on system reliability of the target system. Therefore, we propose a novel software architecture (SA) based reliability estimation model incorporating software deployment and architectural style. On the basis of two architectural styles, we design influence factors and present a new approach to calculate system reliability. Experimental results show that influence factors provide an accurate and simple method of reflecting architectural styles and software deployment on system reliability. It is important for considering the influence of other architectural styles on system reliability in large scale deployment environment.展开更多
In this paper, wc propose a new method to estimate the relationship between software reliability and software development cost taking into account the complexity for developing the software system and the size of soft...In this paper, wc propose a new method to estimate the relationship between software reliability and software development cost taking into account the complexity for developing the software system and the size of software intended to develop during the implementation phase of the software development lifc cycle. On the basis of estimated relationship, a set of empirical data has been used to validate the correctness of the proposed model by comparing the result with the other existing models. The outcome of this work shows that the method proposed here is a relatively straightforward one in formulating the relationship between reliability and cost during implementation phase.展开更多
With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application relia...With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application reliability accurately with the information of system architecture and the components reliabilities together has become a knotty problem.In this paper,the defects in formal description of software architecture and the limitations in existed model assumptions are both analyzed.Moreover,a new software reliability model called Component Interaction Mode(CIM) is proposed.With this model,the problem for existed component-based software reliability analysis models that cannot deal with the cases of component interaction with non-failure independent and non-random control transition is resolved.At last,the practice examples are presented to illustrate the effectiveness of this model.展开更多
Breeze/architecture description language(ADL), is an eX tensible markup language(XML) based architecture description language which is used to model software systems at the architecture level. Though Breeze/ADL pr...Breeze/architecture description language(ADL), is an eX tensible markup language(XML) based architecture description language which is used to model software systems at the architecture level. Though Breeze/ADL provides an appropriate basis for architecture modelling, it can neither analyse nor evaluate the architecture reliability. In this paper, we propose a Breeze/ADL based strategy which, by combining generalized stochastic Petri net(GSPN) and tools for reliability analysis, supports architecture reliability modelling and evaluation. This work expands the idea in three directions: Firstly, we give a Breeze/ADL reliability model in which we add error attributes to Breeze/ADL error model for capturing architecture error information, and at the same time perform the system error state transition through the Breeze/ADL production. Secondly, we present how to map a Breeze/ADL reliability model to a GSPN model, which in turn can be used for reliability analysis. The other task is to develop a Breeze/ADL reliability analysis modelling tool–EXGSPN(Breeze/ADL reliability analysis modelling tool), and combine it with platform independent petri net editor 2(PIPE2) to carry out a reliability assessment.Abstract: Breeze/architecture description language (ADL), is an eXtensible markup language (XML) based architecture description language which is used to model software systems at the architecture level. Though Breeze/ADL provides an appropriate basis for architecture modelling, it can neither analyse nor evaluate the architecture reliability. In this paper, we propose a Breeze/ADL based strategy which, by combining generalized stochastic Petri net (GSPN) and tools for reliability analysis, supports architecture reliability modelling and evaluation. This work expands the idea in three directions: Firstly, we give a Breeze/ADL reliability model in which we add error attributes to Breeze/ADL error model for capturing architecture error information, and at the same time perform the system error state transition through the Breeze/ADL production. Secondly, we present how to map a Breeze/ADL reliability model to a GSPN model, which in turn can be used for reliability analysis. The other task is to develop a Breeze/ADL reliability analysis modelling tool-EXGSPN (Breeze/ADL reliability analysis modelling tool), and combine it with platform independent petri net editor 2 (PIPE2) to carry out a reliability assessment.展开更多
Reliability is one of the most critical properties of software system.System deployment architecture is the allocation of system software components on host nodes.Software Architecture(SA) based software deployment mo...Reliability is one of the most critical properties of software system.System deployment architecture is the allocation of system software components on host nodes.Software Architecture(SA) based software deployment models help to analyze reliability of different deployments.Though many approaches for architecture-based reliability estimation exist,little work has incorporated the influence of system deployment and hardware resources into reliability estimation.There are many factors influencing system deployment.By translating the multi-dimension factors into degree matrix of component dependence,we provide the definition of component dependence and propose a method of calculating system reliability of deployments.Additionally,the parameters that influence the optimal deployment may change during system execution.The existing software deployment architecture may be ill-suited for the given environment,and the system needs to be redeployed to improve reliability.An approximate algorithm,A*_D,to increase system reliability is presented.When the number of components and host nodes is relative large,experimental results show that this algorithm can obtain better deployment than stochastic and greedy algorithms.展开更多
This research recognizes the limitation and challenges of adaptingand applying Process Mining as a powerful tool and technique in theHypothetical Software Architecture (SA) Evaluation Framework with thefeatures and fa...This research recognizes the limitation and challenges of adaptingand applying Process Mining as a powerful tool and technique in theHypothetical Software Architecture (SA) Evaluation Framework with thefeatures and factors of lightweightness. Process mining deals with the largescalecomplexity of security and performance analysis, which are the goalsof SA evaluation frameworks. As a result of these conjectures, all ProcessMining researches in the realm of SA are thoroughly reviewed, and ninechallenges for Process Mining Adaption are recognized. Process mining isembedded in the framework and to boost the quality of the SA model forfurther analysis, the framework nominates architectural discovery algorithmsFlower, Alpha, Integer Linear Programming (ILP), Heuristic, and Inductiveand compares them vs. twelve quality criteria. Finally, the framework’s testingon three case studies approves the feasibility of applying process mining toarchitectural evaluation. The extraction of the SA model is also done by thebest model discovery algorithm, which is selected by intensive benchmarkingin this research. This research presents case studies of SA in service-oriented,Pipe and Filter, and component-based styles, modeled and simulated byHierarchical Colored Petri Net techniques based on the cases’ documentation.Processminingwithin this framework dealswith the system’s log files obtainedfrom SA simulation. Applying process mining is challenging, especially for aSA evaluation framework, as it has not been done yet. The research recognizesthe problems of process mining adaption to a hypothetical lightweightSA evaluation framework and addresses these problems during the solutiondevelopment.展开更多
In view of the current reliability evaluation requirements of warship equipment based on component, this paper comprehensively considered the characteristics of components,and the component identification method, stru...In view of the current reliability evaluation requirements of warship equipment based on component, this paper comprehensively considered the characteristics of components,and the component identification method, structural decomposition method,component architecture modeling method were studied for warship equipment software. Based on the characteristics of warship equipment component, this paper proposed a formal modeling language based on Petri nets to realize the modeling of component software architecture and laid a foundation for the reliability evaluation method research of warship equipment component.展开更多
Architecture Analysis and Design Language (AADL) has been utilized to specify and verify nonfunctional properties of Real-Time Embedded Systems (RTES) used in critical application systems. Examples of such critical ap...Architecture Analysis and Design Language (AADL) has been utilized to specify and verify nonfunctional properties of Real-Time Embedded Systems (RTES) used in critical application systems. Examples of such critical application systems include medical devices, nuclear power plants, aerospace, financial, etc. Using AADL, an engineer is enable to analyze the quality of a system. For example, a developer can perform performance analysis such as end-to-end flow analysis to guarantee that system components have the required resources to meet the timing requirements relevant to their communications. The critical issue related to developing and deploying safety critical systems is how to validate the expected level of quality (e.g., safety, performance, security) and functionalities (capabilities) at design level. Currently, the core AADL is extensively applied to analyze and verify quality of RTES embed in the safety critical applications. The notation lacks the formal semantics needed to reason about the logical properties (e.g., deadlock, livelock, etc.) and capabilities of safety critical systems. The objective of this research is to augment AADL with exiting formal semantics and supporting tools in a manner that these properties can be automatically verified. Toward this goal, we exploit Petri Net Markup Language (PNML), which is a standard acting as the intermediate language between different classes of Petri Nets. Using PNML, we interface AADL with different classes of Petri nets, which support different types of tools and reasoning. The justification for using PNML is that the framework provides a context in which interoperability and exchangeability among different models of a system specified by different types of Petri nets is possible. The contributions of our work include a set of mappings and mapping rules between AADL and PNML. To show the feasibility of our approach, a fragment of RT-Embedded system, namely, Cruise Control System has been used.展开更多
As a significant measure of software security evaluation, software reliability evaluation is also the basis of software safe operation. Traditional software system security evaluation methods are qualitative evaluatio...As a significant measure of software security evaluation, software reliability evaluation is also the basis of software safe operation. Traditional software system security evaluation methods are qualitative evaluation based on the functional and structural measurements, and it often ignores quantitative research based on invalidity and fault. This paper propose a stochastic transition function as a measure parameters of the reliability of stochastic Petri nets (SPN) theory. By calculating the probability of stability of the system, failure and mean time to first failure, it establishes an evaluation and measurement method for software reliability. With example analysis, the method can conduct effective evaluation on the software reliability index quickly and accurately, and meanwhile provides a new method for the software security evaluation.展开更多
文摘Software today often consists of a large number of components offering and requiring services. Such components should be deployed into embedded, pervasive environments, and several deployment architectures are typically possible. These deployment architectures can have significant impacts on system reliability. However, existing reliability estimation approaches are typically limited to certain classes or exclusively concentrate on software reliability, neglecting the influence of hardware resources, software deployment and architectural styles. The selection of an appropriate architectural style has a significant impact on system reliability of the target system. Therefore, we propose a novel software architecture (SA) based reliability estimation model incorporating software deployment and architectural style. On the basis of two architectural styles, we design influence factors and present a new approach to calculate system reliability. Experimental results show that influence factors provide an accurate and simple method of reflecting architectural styles and software deployment on system reliability. It is important for considering the influence of other architectural styles on system reliability in large scale deployment environment.
文摘In this paper, wc propose a new method to estimate the relationship between software reliability and software development cost taking into account the complexity for developing the software system and the size of software intended to develop during the implementation phase of the software development lifc cycle. On the basis of estimated relationship, a set of empirical data has been used to validate the correctness of the proposed model by comparing the result with the other existing models. The outcome of this work shows that the method proposed here is a relatively straightforward one in formulating the relationship between reliability and cost during implementation phase.
基金Supported by the National Natural Science Foundation of China (No. 60873195,60873003,and 61070220)the Doctoral Foundation of Ministry of Education (No.20090111110002)
文摘With the rapid progress of component technology,the software development methodology of gathering a large number of components for designing complex software systems has matured.But,how to assess the application reliability accurately with the information of system architecture and the components reliabilities together has become a knotty problem.In this paper,the defects in formal description of software architecture and the limitations in existed model assumptions are both analyzed.Moreover,a new software reliability model called Component Interaction Mode(CIM) is proposed.With this model,the problem for existed component-based software reliability analysis models that cannot deal with the cases of component interaction with non-failure independent and non-random control transition is resolved.At last,the practice examples are presented to illustrate the effectiveness of this model.
基金supported by Jilin Province Science Foundation for Youths(No.20150520060JH)
文摘Breeze/architecture description language(ADL), is an eX tensible markup language(XML) based architecture description language which is used to model software systems at the architecture level. Though Breeze/ADL provides an appropriate basis for architecture modelling, it can neither analyse nor evaluate the architecture reliability. In this paper, we propose a Breeze/ADL based strategy which, by combining generalized stochastic Petri net(GSPN) and tools for reliability analysis, supports architecture reliability modelling and evaluation. This work expands the idea in three directions: Firstly, we give a Breeze/ADL reliability model in which we add error attributes to Breeze/ADL error model for capturing architecture error information, and at the same time perform the system error state transition through the Breeze/ADL production. Secondly, we present how to map a Breeze/ADL reliability model to a GSPN model, which in turn can be used for reliability analysis. The other task is to develop a Breeze/ADL reliability analysis modelling tool–EXGSPN(Breeze/ADL reliability analysis modelling tool), and combine it with platform independent petri net editor 2(PIPE2) to carry out a reliability assessment.Abstract: Breeze/architecture description language (ADL), is an eXtensible markup language (XML) based architecture description language which is used to model software systems at the architecture level. Though Breeze/ADL provides an appropriate basis for architecture modelling, it can neither analyse nor evaluate the architecture reliability. In this paper, we propose a Breeze/ADL based strategy which, by combining generalized stochastic Petri net (GSPN) and tools for reliability analysis, supports architecture reliability modelling and evaluation. This work expands the idea in three directions: Firstly, we give a Breeze/ADL reliability model in which we add error attributes to Breeze/ADL error model for capturing architecture error information, and at the same time perform the system error state transition through the Breeze/ADL production. Secondly, we present how to map a Breeze/ADL reliability model to a GSPN model, which in turn can be used for reliability analysis. The other task is to develop a Breeze/ADL reliability analysis modelling tool-EXGSPN (Breeze/ADL reliability analysis modelling tool), and combine it with platform independent petri net editor 2 (PIPE2) to carry out a reliability assessment.
基金Supported by the High Technology Research and Development Program of China(No.2008AA01A201)National High Technology Research,Development Plan of China (No.2006AA01A103)the High Technology Research and Development Program of China(No.2009AA01A404)
文摘Reliability is one of the most critical properties of software system.System deployment architecture is the allocation of system software components on host nodes.Software Architecture(SA) based software deployment models help to analyze reliability of different deployments.Though many approaches for architecture-based reliability estimation exist,little work has incorporated the influence of system deployment and hardware resources into reliability estimation.There are many factors influencing system deployment.By translating the multi-dimension factors into degree matrix of component dependence,we provide the definition of component dependence and propose a method of calculating system reliability of deployments.Additionally,the parameters that influence the optimal deployment may change during system execution.The existing software deployment architecture may be ill-suited for the given environment,and the system needs to be redeployed to improve reliability.An approximate algorithm,A*_D,to increase system reliability is presented.When the number of components and host nodes is relative large,experimental results show that this algorithm can obtain better deployment than stochastic and greedy algorithms.
基金This paper is supported by Research Grant Number:PP-FTSM-2022.
文摘This research recognizes the limitation and challenges of adaptingand applying Process Mining as a powerful tool and technique in theHypothetical Software Architecture (SA) Evaluation Framework with thefeatures and factors of lightweightness. Process mining deals with the largescalecomplexity of security and performance analysis, which are the goalsof SA evaluation frameworks. As a result of these conjectures, all ProcessMining researches in the realm of SA are thoroughly reviewed, and ninechallenges for Process Mining Adaption are recognized. Process mining isembedded in the framework and to boost the quality of the SA model forfurther analysis, the framework nominates architectural discovery algorithmsFlower, Alpha, Integer Linear Programming (ILP), Heuristic, and Inductiveand compares them vs. twelve quality criteria. Finally, the framework’s testingon three case studies approves the feasibility of applying process mining toarchitectural evaluation. The extraction of the SA model is also done by thebest model discovery algorithm, which is selected by intensive benchmarkingin this research. This research presents case studies of SA in service-oriented,Pipe and Filter, and component-based styles, modeled and simulated byHierarchical Colored Petri Net techniques based on the cases’ documentation.Processminingwithin this framework dealswith the system’s log files obtainedfrom SA simulation. Applying process mining is challenging, especially for aSA evaluation framework, as it has not been done yet. The research recognizesthe problems of process mining adaption to a hypothetical lightweightSA evaluation framework and addresses these problems during the solutiondevelopment.
文摘In view of the current reliability evaluation requirements of warship equipment based on component, this paper comprehensively considered the characteristics of components,and the component identification method, structural decomposition method,component architecture modeling method were studied for warship equipment software. Based on the characteristics of warship equipment component, this paper proposed a formal modeling language based on Petri nets to realize the modeling of component software architecture and laid a foundation for the reliability evaluation method research of warship equipment component.
文摘Architecture Analysis and Design Language (AADL) has been utilized to specify and verify nonfunctional properties of Real-Time Embedded Systems (RTES) used in critical application systems. Examples of such critical application systems include medical devices, nuclear power plants, aerospace, financial, etc. Using AADL, an engineer is enable to analyze the quality of a system. For example, a developer can perform performance analysis such as end-to-end flow analysis to guarantee that system components have the required resources to meet the timing requirements relevant to their communications. The critical issue related to developing and deploying safety critical systems is how to validate the expected level of quality (e.g., safety, performance, security) and functionalities (capabilities) at design level. Currently, the core AADL is extensively applied to analyze and verify quality of RTES embed in the safety critical applications. The notation lacks the formal semantics needed to reason about the logical properties (e.g., deadlock, livelock, etc.) and capabilities of safety critical systems. The objective of this research is to augment AADL with exiting formal semantics and supporting tools in a manner that these properties can be automatically verified. Toward this goal, we exploit Petri Net Markup Language (PNML), which is a standard acting as the intermediate language between different classes of Petri Nets. Using PNML, we interface AADL with different classes of Petri nets, which support different types of tools and reasoning. The justification for using PNML is that the framework provides a context in which interoperability and exchangeability among different models of a system specified by different types of Petri nets is possible. The contributions of our work include a set of mappings and mapping rules between AADL and PNML. To show the feasibility of our approach, a fragment of RT-Embedded system, namely, Cruise Control System has been used.
基金Supported by the Education Reform Project in Guizhou Province(SJJG201404)Engineering Center of Avionics Electrical and Information Network of Guizhou Province Colleges and Universities(HKDZ201406)
文摘As a significant measure of software security evaluation, software reliability evaluation is also the basis of software safe operation. Traditional software system security evaluation methods are qualitative evaluation based on the functional and structural measurements, and it often ignores quantitative research based on invalidity and fault. This paper propose a stochastic transition function as a measure parameters of the reliability of stochastic Petri nets (SPN) theory. By calculating the probability of stability of the system, failure and mean time to first failure, it establishes an evaluation and measurement method for software reliability. With example analysis, the method can conduct effective evaluation on the software reliability index quickly and accurately, and meanwhile provides a new method for the software security evaluation.