With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,t...With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,these problems cannot be detected in time.The current faulty path detection mechan-isms have problems such as the large scale of detection and low efficiency,which is difficult to meet the requirements of efficient faulty path detection in large-scale SDN.Concerning this issue,we propose an efficient network path fault testing model ProbD based on probability detection.This model achieves a high prob-ability of detecting arbitrary path fault in the form of small-scale random sam-pling.Under a certain path fault rate,ProbD obtains the curve of sample size and probability of detecting arbitrary path fault by randomly sampling network paths several times.After a small number of experiments,the ProbD model can cor-rectly estimate the path fault rate of the network and calculate the total number of paths that need to be detected according to the different probability of detecting arbitrary path fault and the path fault rate of the network.Thefinal experimental results show that,compared with the full path coverage test,the ProbD model based on probability detection can achieve efficient network testing with less overhead.Besides,the larger the network scale is,the more overhead will be saved.展开更多
In a non-static information exchange network,routing is an overly com-plex task to perform,which has to satisfy all the needs of the network.Software Defined Network(SDN)is the latest and widely used technology in the ...In a non-static information exchange network,routing is an overly com-plex task to perform,which has to satisfy all the needs of the network.Software Defined Network(SDN)is the latest and widely used technology in the future communication networks,which would provide smart routing that is visible uni-versally.The various features of routing are supported by the information centric network,which minimizes the congestion in the dataflow in a network and pro-vides the content awareness through its mined mastery.Due to the advantages of the information centric network,the concepts of the information-centric net-work has been used in the paper to enable an optimal routing in the software-defined networks.Although there are many advantages in the information-centric network,there are some disadvantages due to the non-static communication prop-erties,which affects the routing in SDN.In this regard,artificial intelligence meth-odology has been used in the proposed approach to solve these difficulties.A detailed analysis has been conducted to map the content awareness with deep learning and deep reinforcement learning with routing.The novel aligned internet investigation technique has been proposed to process the deep reinforcement learning.The performance evaluation of the proposed systems has been con-ducted among various existing approaches and results in optimal load balancing,usage of the bandwidth,and maximization in the throughput of the network.展开更多
Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though ...Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.展开更多
针对软件定义网络(Software Defined Network,SDN)的可编程重要特性,以控制平面北向应用开发为主要内容,设计实验方案。该方案基于负载均衡的SDN应用场景,对Open-Daylight控制器北向接口采用Python编程并部署实现。一方面可以加强SDN的...针对软件定义网络(Software Defined Network,SDN)的可编程重要特性,以控制平面北向应用开发为主要内容,设计实验方案。该方案基于负载均衡的SDN应用场景,对Open-Daylight控制器北向接口采用Python编程并部署实现。一方面可以加强SDN的场景认知,为学习北向应用开发提供有意义的实践指导;另一方面能够促进学生深入理解SDN的可编程内涵,掌握SDN灵活部署网络新业务的架构优势,从而提升网络应用的实践创新能力。展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘With the increasing number of switches in Software-Defined Network-ing(SDN),there are more and more faults rising in the data plane.However,due to the existence of link redundancy and multi-path forwarding mechanisms,these problems cannot be detected in time.The current faulty path detection mechan-isms have problems such as the large scale of detection and low efficiency,which is difficult to meet the requirements of efficient faulty path detection in large-scale SDN.Concerning this issue,we propose an efficient network path fault testing model ProbD based on probability detection.This model achieves a high prob-ability of detecting arbitrary path fault in the form of small-scale random sam-pling.Under a certain path fault rate,ProbD obtains the curve of sample size and probability of detecting arbitrary path fault by randomly sampling network paths several times.After a small number of experiments,the ProbD model can cor-rectly estimate the path fault rate of the network and calculate the total number of paths that need to be detected according to the different probability of detecting arbitrary path fault and the path fault rate of the network.Thefinal experimental results show that,compared with the full path coverage test,the ProbD model based on probability detection can achieve efficient network testing with less overhead.Besides,the larger the network scale is,the more overhead will be saved.
文摘In a non-static information exchange network,routing is an overly com-plex task to perform,which has to satisfy all the needs of the network.Software Defined Network(SDN)is the latest and widely used technology in the future communication networks,which would provide smart routing that is visible uni-versally.The various features of routing are supported by the information centric network,which minimizes the congestion in the dataflow in a network and pro-vides the content awareness through its mined mastery.Due to the advantages of the information centric network,the concepts of the information-centric net-work has been used in the paper to enable an optimal routing in the software-defined networks.Although there are many advantages in the information-centric network,there are some disadvantages due to the non-static communication prop-erties,which affects the routing in SDN.In this regard,artificial intelligence meth-odology has been used in the proposed approach to solve these difficulties.A detailed analysis has been conducted to map the content awareness with deep learning and deep reinforcement learning with routing.The novel aligned internet investigation technique has been proposed to process the deep reinforcement learning.The performance evaluation of the proposed systems has been con-ducted among various existing approaches and results in optimal load balancing,usage of the bandwidth,and maximization in the throughput of the network.
文摘Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.
文摘针对软件定义网络(Software Defined Network,SDN)的可编程重要特性,以控制平面北向应用开发为主要内容,设计实验方案。该方案基于负载均衡的SDN应用场景,对Open-Daylight控制器北向接口采用Python编程并部署实现。一方面可以加强SDN的场景认知,为学习北向应用开发提供有意义的实践指导;另一方面能够促进学生深入理解SDN的可编程内涵,掌握SDN灵活部署网络新业务的架构优势,从而提升网络应用的实践创新能力。