Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an...Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.展开更多
Large amounts of carbon dioxide(CO2) should be injected in deep saline formations to mitigate climate change,implying geomechanical challenges that require further understanding.Pressure build-up induced by CO2injecti...Large amounts of carbon dioxide(CO2) should be injected in deep saline formations to mitigate climate change,implying geomechanical challenges that require further understanding.Pressure build-up induced by CO2injection will decrease the effective stresses and may affect fault stability.Geomechanical effects of overpressure induced by CO2injection either in the hanging wall or in the foot wall on fault stability are investigated.CO2injection in the presence of a low-permeable fault induces pressurization of the storage formation between the injection well and the fault.The low permeability of the fault hinders fluid flow across it and leads to smaller overpressure on the other side of the fault.This variability in the fluid pressure distribution gives rise to differential total stress changes around the fault that reduce its stability.Despite a significant pressure build-up induced by the fault,caprock stability around the injection well is not compromised and thus,CO2leakage across the caprock is unlikely to happen.The decrease in fault stability is similar regardless of the side of the fault where CO2is injected.Simulation results show that fault core permeability has a significant effect on fault stability,becoming less affected for high-permeable faults.An appropriate pressure management will allow storing large quantities of CO2without inducing fault reactivation.展开更多
Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configurati...Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configuration.Many researchers conducted experiments for the observation of fluid flow and the evaluation of production performance,while most of their physical models were fabricated based on the probability distribution of fractures and caves in the reservoir.In this study,a two-dimensional physical model of the karst fault system was designed and fabricated based on the geological model of TK748 well group in the seventh block of the Tahe Oilfield.The fluid flow and production performance of primary gas flooding were discussed.Gas-assisted gravity flooding was firstly introduced to take full use of gas-oil gravity difference,and its feasibility in the karst fault system was examined.Experimental results showed that primary gas flooding created more flow paths and achieved a remarkable increment of oil recovery compared to water flooding.Gas injection at a lower location was recommended to delay gas breakthrough.Gas-assisted gravity flooding achieved more stable gas-displacing-oil because oil production was at a lower location,and thus,the oil recovery was further enhanced.展开更多
The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues ...The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.展开更多
Considering the deficiency of the means for confirming the attribution of fault redundancy in the re-search of Automatic Testing System(ATS) , a fault-injection system has been proposed to study fault redundancyof aut...Considering the deficiency of the means for confirming the attribution of fault redundancy in the re-search of Automatic Testing System(ATS) , a fault-injection system has been proposed to study fault redundancyof automatic testing system through compurison. By means of a fault-imbeded environmental simulation, thefaults injected at the input level of the software are under test. These faults may induce inherent failure mode,thus bringing about unexpected output, and the anticipated goal of the test is attained. The fault injection con-sists of voltage signal generator, current signal generator and rear drive circuit which are specially developed,and the ATS can work regularly by means of software simulation. The experimental results indicate that the faultinjection system can find the deficiency of the automatic testing software, and identify the preference of fault re-dundancy. On the other hand, some soft deficiency never exposed before can be identified by analyzing the tes-ting results.展开更多
A software fault injection system SFIS is designed,which consists of the target system plus a fault injector,fault library,workload,data collector,and data analyzer. A serial communication mechanism is adopted to simu...A software fault injection system SFIS is designed,which consists of the target system plus a fault injector,fault library,workload,data collector,and data analyzer. A serial communication mechanism is adopted to simulate the factual work environment. Then a fault model is built for single particle event,which can be denoted as FM=(FL,FT). FL stands for fault location,and FT stands for fault type. The fault model supports three temporal faults: transient,intermittent,and permanent. During the experiments implemented by SFIS,the software interruption method is adopted to inject transient faults,and step trace method is adopted to inject permanent faults into the target system. The experiment results indicate that for the injected transient code segment faults,2.8 % of them do not affect the program output,80.1% of them are detected by the built-in error detection in the system,and 17.1% of them are not detected by fault detection mechanism. The experiment results verify the validity of the fault injection method.展开更多
A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special d...A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.展开更多
A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault inje...A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.展开更多
The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capabili...The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capability of online as well as offline testable digital circuits for both permanent and transient faults, during the design stage of the circuits. This paper presents a technique for transient and permanent fault injection at the VHDL level description of both combinational and sequential digital circuits. Access to all VHDL blocks a system is straight forward using a specially designed single fault injection block. This capability of inserting transient and permanent faults should help in evaluating the testability of a digital system before it is actually implemented.展开更多
Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to validate and understand defect behaviour in a software application is Fault Injection. Fault i...Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to validate and understand defect behaviour in a software application is Fault Injection. Fault injection involves the deliberate insertion of faults or errors into software in order to determine its response and to study its behaviour. Fault Injection Modeling has demonstrated to be an effective method for study and analysis of defect response, validating fault-tolerant systems, and understanding systems behaviour in the presence of injected faults. The objectives of this study are to measure and analyze defect leakage;Amplification Index (AI) of errors and examine “Domino” effect of defects leaked into subsequent Software Development Life Cycle phases in a business application. The approach endeavour to demonstrate the phasewise impact of leaked defects, through causal analysis and quantitative analysis of defects leakage and amplification index patterns in system built using technology variants (C#, VB 6.0, Java).展开更多
This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development pr...This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development process of fault block reservoirs. Considering the heterogeneity of reservoir, the Buckley-Leverett water flooding theory was applied to establish the relationship between the recovery and cumulative water injection. In order to achieve the goal of vertically balanced recovery of each section, the calculation method of vertical sectional injection allocation was proposed. The planar triangular seepage unit was assumed and sweep coefficients of different oil-water distribution patterns were characterized using multi-flow tube method. In order to balance and maximize the plane sweep coefficient, the calculation method of plane production system optimization was obtained. Then the injection-production system stereoscopic adjustment method based on equilibrium displacement was proposed with vertical sectional injection allocation and plane production system optimization. This method was applied to injection and production adjustment of BZ oilfield in southern Bohai. The effect of water control and oil increase was obvious. This method can greatly improve the effect of water flooding of offshore fault block reservoirs with the adjustment of injection-production system.展开更多
In the light of current concerns related to induced seismicity associated with geological carbon sequestration(GCS),this paper summarizes lessons learned from recent modeling studies on fault activation,induced seismi...In the light of current concerns related to induced seismicity associated with geological carbon sequestration(GCS),this paper summarizes lessons learned from recent modeling studies on fault activation,induced seismicity,and potential for leakage associated with deep underground carbon dioxide(CO2) injection.Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once.Heterogeneous fault properties,which are commonly encountered in faults intersecting multilayered shale/sandstone sequences,effectively reduce the likelihood of inducing felt seismicity and also effectively impede upward CO2leakage.A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units.Site-specific model simulations of the In Salah CO2storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir,but at a very substantial reservoir overpressure close to the magnitude of the least principal stress.We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.展开更多
From 2009 to 2017,parts of Central America experienced marked increase in the number of small to moderate-sized earthquakes.For example,three significant earthquakes(~Mw 5)occurred near Prague,Oklahoma,in the U.S.in 2...From 2009 to 2017,parts of Central America experienced marked increase in the number of small to moderate-sized earthquakes.For example,three significant earthquakes(~Mw 5)occurred near Prague,Oklahoma,in the U.S.in 2011.On 6 Nov 2011,an Mw 5.7 earthquake occurred in Prague,central Oklahoma with a sequence of aftershocks.The seismic activity has been attributed to slip on the Wilzetta fault system.This study provides a 3 D fully coupled poroelastic analysis(using FLAC3 D)of the Wilzetta fault system and its response to saltwater injection in the underpressured subsurface layers,especially the Arbuckle group and the basement,to evaluate the conditions that might have led to the increased seismicity.Given the data-limited nature of the problem,we have considered multiple plausible scenarios,and use the available data to evaluate the hydromechanical response of the faults of interest in the study area.Numerical simulations show that the injection of large volumes of fluid into the Arbuckle group tends to bring the part of the Wilzetta faults in Arbuckle group and basement into near-critical conditions.展开更多
With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inr...With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.展开更多
<div style="text-align:justify;"> When the vibration of diesel engine structure is measured, the signal is composed of a very complex superposition of the contributions of different vibratory sources m...<div style="text-align:justify;"> When the vibration of diesel engine structure is measured, the signal is composed of a very complex superposition of the contributions of different vibratory sources modified by their respective transmission paths. These sources originate from several internal phenomenon in the engine such as combustion pressure variation, unbalanced reciprocating and rotating parts. In a diesel engine, movement parts work in a specific order. Once the starting point is determined, occurrence of work order in different cycle phases can be determined. This could successfully use to identifying of impulses in complex vibration signal of a diesel engine. From the variation of features of those impulses, it is possible to determine the working condition of the engine. This can use to fault diagnosis of diesel engine, specially faults related to combustion process. </div>展开更多
The structural style, fault activity, strike-slip displacement, and the formation mechanism and hydrocarbon migration and accumulation in the center tectonic zone in the northeast Shaleitian Bulge of Zhangjiakou-Pengl...The structural style, fault activity, strike-slip displacement, and the formation mechanism and hydrocarbon migration and accumulation in the center tectonic zone in the northeast Shaleitian Bulge of Zhangjiakou-Penglai Fault Zone were studied by seismic attribute analysis, structural geometric analysis, fault activity analysis, structure evolution history and simulation of hydrocarbon migration, based on 3-D seismic and drilling data. The main results are as follows:(1) The study area is a superimposed tectonic zone, which experienced early(Paleocene and Eocene) extension and late(Oligocene and Pliocene-Quaternary) strike-slip and pull-apart.(2) The sinistral strike slip of the northeast Shaleitian Bulge of Zhangjiakou-Penglai Fault Zone went through two periods, Oligocene and Pliocene-Quaternary, and the Bohai section was active earlier than the inland section.(3) The sinistral strike slip displacement of Zhangjiakou-Penglai Fault is 4 km since Cenozoic, including 1 km in the Oligocene, and 3 km in the Pliocene-Quaternary.(4) The strike-slip movements have resulted in the increase of fault activity and basin-mountain restructure in the fault zone, also contributed to the formation of the central tectonic belt and the conjugate evolution in north-east structural belt.(5) The conjugate strike slip of the Zhangjiakou-Penglai Fault Zone dominated the migration and accumulation of hydrocarbon in shallow formations by controlling the injection points and segments of hydrocarbon from the deep layers to shallow layers.展开更多
KLEIN-64 is a lightweight block cipher designed for resource-constrained environment,and it has advantages in software performance and hardware implementation.Recent investigation shows that KLEIN-64 is vulnerable to ...KLEIN-64 is a lightweight block cipher designed for resource-constrained environment,and it has advantages in software performance and hardware implementation.Recent investigation shows that KLEIN-64 is vulnerable to differential fault attack(DFA).In this paper,an improved DFA is performed to KLEIN-64.It is found that the differential propagation path and the distribution of the S-box can be fully utilized to distinguish the correct and wrong keys when a half-byte fault is injected in the 10th round.By analyzing the difference matrix before the last round of S-box,the location of fault injection can be limited to a small range.Thus,this improved analysis can greatly improve the attack efficiency.For the best case,the scale of brute-force attack is only 256.While for the worst case,the scale of brute-force attack is far less than 232 with another half byte fault injection,and the probability for this case is 1/64.Furthermore,the measures for KLEIN-64 in resisting the improved DFA are proposed.展开更多
Field Programmable Gate Arrays(FPGAs)offer high capability in implementing of complex systems,and currently are an attractive solution for space system electronics.However,FPGAs are susceptible to radiation induced Si...Field Programmable Gate Arrays(FPGAs)offer high capability in implementing of complex systems,and currently are an attractive solution for space system electronics.However,FPGAs are susceptible to radiation induced Single-Event Upsets(SEUs).To insure reliable operation of FPGA based systems in a harsh radiation environment,various SEU mitigation techniques have been provided.In this paper we propose a system based on dynamic partial reconfiguration capability of the modern devices to evaluate the SEU fault effect in FPGA.The proposed approach combines the fault injection controller with the host FPGA,and therefore the hardware complexity is minimized.All of the SEU injection and evaluation requirements are performed by a soft-core which realized inside the host FPGA.Experimental results on some standard benchmark circuits reveal that the proposed system is able to speed up the fault injection campaign 50 times in compared to conventional method.展开更多
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of...Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.展开更多
基金supported by the US Department of Energy (DOE),the Office of Nuclear Energy,Spent Fuel and Waste Science and Technology Campaign,under Contract Number DE-AC02-05CH11231the National Energy Technology Laboratory under the award number FP00013650 at Lawrence Berkeley National Laboratory.
文摘Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections.
基金the support from the"EPFL Fellows"fellowship program co-funded by Marie Curie,FP7(Grant No.291771)partial support from the"TRUST"project of the European Community's Seventh Framework Programme FP7/2007-2013(Grant No.309607)+2 种基金the"FracRisk"project of the European Community's Horizon 2020 Framework Programme H2020-EU.3.3.2.3(Grant No.640979)sponsored by SCCER-SoE(Switzerland)(Grant No.KTI.2013.288)Swiss Federal Office of Energy(SFOE)project CAPROCK(Grant No.810008154)
文摘Large amounts of carbon dioxide(CO2) should be injected in deep saline formations to mitigate climate change,implying geomechanical challenges that require further understanding.Pressure build-up induced by CO2injection will decrease the effective stresses and may affect fault stability.Geomechanical effects of overpressure induced by CO2injection either in the hanging wall or in the foot wall on fault stability are investigated.CO2injection in the presence of a low-permeable fault induces pressurization of the storage formation between the injection well and the fault.The low permeability of the fault hinders fluid flow across it and leads to smaller overpressure on the other side of the fault.This variability in the fluid pressure distribution gives rise to differential total stress changes around the fault that reduce its stability.Despite a significant pressure build-up induced by the fault,caprock stability around the injection well is not compromised and thus,CO2leakage across the caprock is unlikely to happen.The decrease in fault stability is similar regardless of the side of the fault where CO2is injected.Simulation results show that fault core permeability has a significant effect on fault stability,becoming less affected for high-permeable faults.An appropriate pressure management will allow storing large quantities of CO2without inducing fault reactivation.
基金the financial support from National Natural Science Foundation of China(51504268)National Technology Major Project of China(2016ZX05014).
文摘Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configuration.Many researchers conducted experiments for the observation of fluid flow and the evaluation of production performance,while most of their physical models were fabricated based on the probability distribution of fractures and caves in the reservoir.In this study,a two-dimensional physical model of the karst fault system was designed and fabricated based on the geological model of TK748 well group in the seventh block of the Tahe Oilfield.The fluid flow and production performance of primary gas flooding were discussed.Gas-assisted gravity flooding was firstly introduced to take full use of gas-oil gravity difference,and its feasibility in the karst fault system was examined.Experimental results showed that primary gas flooding created more flow paths and achieved a remarkable increment of oil recovery compared to water flooding.Gas injection at a lower location was recommended to delay gas breakthrough.Gas-assisted gravity flooding achieved more stable gas-displacing-oil because oil production was at a lower location,and thus,the oil recovery was further enhanced.
基金supported by Science and Technology Project of State Grid Corporation of China(52094020006U)National Natural Science Foundation of China(NSFC)(52061635105)China Postdoctoral Science Foundation(2021M692525).
文摘The existing LCC-HVDC transmission project adopts the fixed-time delay restarting method.This method has disadvantages such as non-selectivity,long restart process,and high probability of restart failure.These issues cause a secondary impact on equipment and system power fluctuation.To solve this problem,an adaptive restarting method based on the principle of fault location by current injection is proposed.First,an additional control strategy is proposed to inject a current detection signal.Second,the propagation law of the current signal in the line is analyzed based on the distributed parameter model of transmission line.Finally,a method for identifying fault properties based on the principle of fault location is proposed.The method fully considers the influence of the long-distance transmission line with earth capacitance and overcomes the influence of the increasing effect of the opposite terminal.Simulation results show that the proposed method can accurately identify the fault properties under various complex fault conditions and subsequently realize the adaptive restarting process.
基金Sponsored by the Fund of "the Tenth 5-year" Preparatory Project of National Defence(Grant No. 417010402)
文摘Considering the deficiency of the means for confirming the attribution of fault redundancy in the re-search of Automatic Testing System(ATS) , a fault-injection system has been proposed to study fault redundancyof automatic testing system through compurison. By means of a fault-imbeded environmental simulation, thefaults injected at the input level of the software are under test. These faults may induce inherent failure mode,thus bringing about unexpected output, and the anticipated goal of the test is attained. The fault injection con-sists of voltage signal generator, current signal generator and rear drive circuit which are specially developed,and the ATS can work regularly by means of software simulation. The experimental results indicate that the faultinjection system can find the deficiency of the automatic testing software, and identify the preference of fault re-dundancy. On the other hand, some soft deficiency never exposed before can be identified by analyzing the tes-ting results.
基金National Defense Scientific Work Committee Foundation of China (Grant No.16.6.2.7).
文摘A software fault injection system SFIS is designed,which consists of the target system plus a fault injector,fault library,workload,data collector,and data analyzer. A serial communication mechanism is adopted to simulate the factual work environment. Then a fault model is built for single particle event,which can be denoted as FM=(FL,FT). FL stands for fault location,and FT stands for fault type. The fault model supports three temporal faults: transient,intermittent,and permanent. During the experiments implemented by SFIS,the software interruption method is adopted to inject transient faults,and step trace method is adopted to inject permanent faults into the target system. The experiment results indicate that for the injected transient code segment faults,2.8 % of them do not affect the program output,80.1% of them are detected by the built-in error detection in the system,and 17.1% of them are not detected by fault detection mechanism. The experiment results verify the validity of the fault injection method.
基金Postdoctoral Foundation of China(No.20070410755)PAN Zhencun,born in 1962,male,postdoctor researcher.
文摘A diagnostic signal current trace detecting based single phase-to-ground fault line identifica- tion and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system,and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.
基金Project(513150601)supported by the National Pre-Research Project Foundation of China
文摘A fault injection model-oriented testing strategy was proposed for detecting component vulnerabilities.A fault injection model was defined,and the faults were injected into the tested component based on the fault injection model to trigger security exceptions.The testing process could be recorded by the monitoring mechanism of the strategy,and the monitoring information was written into the security log.The component vulnerabilities could be detected by the detecting algorithm through analyzing the security log.Lastly,some experiments were done in an integration testing platform to verify the applicability of the strategy.The experimental results show that the strategy is effective and operable.The detecting rate is more than 90%for vulnerability components.
文摘The ability to evaluate the testability of digital circuits before they are actually implemented is critical for designing highly reliable systems. This feature enables designers to verify the fault detection capability of online as well as offline testable digital circuits for both permanent and transient faults, during the design stage of the circuits. This paper presents a technique for transient and permanent fault injection at the VHDL level description of both combinational and sequential digital circuits. Access to all VHDL blocks a system is straight forward using a specially designed single fault injection block. This capability of inserting transient and permanent faults should help in evaluating the testability of a digital system before it is actually implemented.
文摘Software reliability for business applications is becoming a topic of interest in the IT community. An effective method to validate and understand defect behaviour in a software application is Fault Injection. Fault injection involves the deliberate insertion of faults or errors into software in order to determine its response and to study its behaviour. Fault Injection Modeling has demonstrated to be an effective method for study and analysis of defect response, validating fault-tolerant systems, and understanding systems behaviour in the presence of injected faults. The objectives of this study are to measure and analyze defect leakage;Amplification Index (AI) of errors and examine “Domino” effect of defects leaked into subsequent Software Development Life Cycle phases in a business application. The approach endeavour to demonstrate the phasewise impact of leaked defects, through causal analysis and quantitative analysis of defects leakage and amplification index patterns in system built using technology variants (C#, VB 6.0, Java).
文摘This paper proposed a method of injection-production system adjustment to solve the problem that the water flooding effect was restricted because of the horizontal and vertical contradictions during the development process of fault block reservoirs. Considering the heterogeneity of reservoir, the Buckley-Leverett water flooding theory was applied to establish the relationship between the recovery and cumulative water injection. In order to achieve the goal of vertically balanced recovery of each section, the calculation method of vertical sectional injection allocation was proposed. The planar triangular seepage unit was assumed and sweep coefficients of different oil-water distribution patterns were characterized using multi-flow tube method. In order to balance and maximize the plane sweep coefficient, the calculation method of plane production system optimization was obtained. Then the injection-production system stereoscopic adjustment method based on equilibrium displacement was proposed with vertical sectional injection allocation and plane production system optimization. This method was applied to injection and production adjustment of BZ oilfield in southern Bohai. The effect of water control and oil increase was obvious. This method can greatly improve the effect of water flooding of offshore fault block reservoirs with the adjustment of injection-production system.
基金funded by the Assistant Secretary for Fossil Energy,National Energy Technology Laboratory,National Risk Assessment Partnership of the U.S. Department of Energy under Contract No.DEAC02-05CH11231a Swiss National Science Foundation(SNSF) Ambizione Energy grant(PZENP2_160555)
文摘In the light of current concerns related to induced seismicity associated with geological carbon sequestration(GCS),this paper summarizes lessons learned from recent modeling studies on fault activation,induced seismicity,and potential for leakage associated with deep underground carbon dioxide(CO2) injection.Model simulations demonstrate that seismic events large enough to be felt by humans require brittle fault properties and continuous fault permeability allowing pressure to be distributed over a large fault patch to be ruptured at once.Heterogeneous fault properties,which are commonly encountered in faults intersecting multilayered shale/sandstone sequences,effectively reduce the likelihood of inducing felt seismicity and also effectively impede upward CO2leakage.A number of simulations show that even a sizable seismic event that could be felt may not be capable of opening a new flow path across the entire thickness of an overlying caprock and it is very unlikely to cross a system of multiple overlying caprock units.Site-specific model simulations of the In Salah CO2storage demonstration site showed that deep fractured zone responses and associated microseismicity occurred in the brittle fractured sandstone reservoir,but at a very substantial reservoir overpressure close to the magnitude of the least principal stress.We conclude by emphasizing the importance of site investigation to characterize rock properties and if at all possible to avoid brittle rock such as proximity of crystalline basement or sites in hard and brittle sedimentary sequences that are more prone to injection-induced seismicity and permanent damage.
文摘From 2009 to 2017,parts of Central America experienced marked increase in the number of small to moderate-sized earthquakes.For example,three significant earthquakes(~Mw 5)occurred near Prague,Oklahoma,in the U.S.in 2011.On 6 Nov 2011,an Mw 5.7 earthquake occurred in Prague,central Oklahoma with a sequence of aftershocks.The seismic activity has been attributed to slip on the Wilzetta fault system.This study provides a 3 D fully coupled poroelastic analysis(using FLAC3 D)of the Wilzetta fault system and its response to saltwater injection in the underpressured subsurface layers,especially the Arbuckle group and the basement,to evaluate the conditions that might have led to the increased seismicity.Given the data-limited nature of the problem,we have considered multiple plausible scenarios,and use the available data to evaluate the hydromechanical response of the faults of interest in the study area.Numerical simulations show that the injection of large volumes of fluid into the Arbuckle group tends to bring the part of the Wilzetta faults in Arbuckle group and basement into near-critical conditions.
基金financial support from the National Natural Science Foundation of China(No.41702326)the Jiangxi Provincial Natural Science Foundation(No.20202ACB214006)+2 种基金the Innovative Experts,Long-term Program of Jiangxi Province(No.jxsq2018106049)the Supported by Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technologythe Innovation Fund Designated for Graduate Students of Jiangxi Province(No.YC2020-S451)。
文摘With the gradual depletion of shallow coal resources,the Yanzhou mine in China will enter the lower coal seam mining phase.However,as mining depth increases,lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone.The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links.By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test,an evaluation model of the seepage barrier capacity of the fault was established.The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone.The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast.By comparing the water inrush coefficient method and the evaluation model of fault impermeability,the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.
文摘<div style="text-align:justify;"> When the vibration of diesel engine structure is measured, the signal is composed of a very complex superposition of the contributions of different vibratory sources modified by their respective transmission paths. These sources originate from several internal phenomenon in the engine such as combustion pressure variation, unbalanced reciprocating and rotating parts. In a diesel engine, movement parts work in a specific order. Once the starting point is determined, occurrence of work order in different cycle phases can be determined. This could successfully use to identifying of impulses in complex vibration signal of a diesel engine. From the variation of features of those impulses, it is possible to determine the working condition of the engine. This can use to fault diagnosis of diesel engine, specially faults related to combustion process. </div>
基金Supported by the China National Science and Technology Major Project(2016ZX05024-003)
文摘The structural style, fault activity, strike-slip displacement, and the formation mechanism and hydrocarbon migration and accumulation in the center tectonic zone in the northeast Shaleitian Bulge of Zhangjiakou-Penglai Fault Zone were studied by seismic attribute analysis, structural geometric analysis, fault activity analysis, structure evolution history and simulation of hydrocarbon migration, based on 3-D seismic and drilling data. The main results are as follows:(1) The study area is a superimposed tectonic zone, which experienced early(Paleocene and Eocene) extension and late(Oligocene and Pliocene-Quaternary) strike-slip and pull-apart.(2) The sinistral strike slip of the northeast Shaleitian Bulge of Zhangjiakou-Penglai Fault Zone went through two periods, Oligocene and Pliocene-Quaternary, and the Bohai section was active earlier than the inland section.(3) The sinistral strike slip displacement of Zhangjiakou-Penglai Fault is 4 km since Cenozoic, including 1 km in the Oligocene, and 3 km in the Pliocene-Quaternary.(4) The strike-slip movements have resulted in the increase of fault activity and basin-mountain restructure in the fault zone, also contributed to the formation of the central tectonic belt and the conjugate evolution in north-east structural belt.(5) The conjugate strike slip of the Zhangjiakou-Penglai Fault Zone dominated the migration and accumulation of hydrocarbon in shallow formations by controlling the injection points and segments of hydrocarbon from the deep layers to shallow layers.
基金This work was supported in part by project supported by National Natural Science Foundation of China(Grant Nos.U1936115,61572182).
文摘KLEIN-64 is a lightweight block cipher designed for resource-constrained environment,and it has advantages in software performance and hardware implementation.Recent investigation shows that KLEIN-64 is vulnerable to differential fault attack(DFA).In this paper,an improved DFA is performed to KLEIN-64.It is found that the differential propagation path and the distribution of the S-box can be fully utilized to distinguish the correct and wrong keys when a half-byte fault is injected in the 10th round.By analyzing the difference matrix before the last round of S-box,the location of fault injection can be limited to a small range.Thus,this improved analysis can greatly improve the attack efficiency.For the best case,the scale of brute-force attack is only 256.While for the worst case,the scale of brute-force attack is far less than 232 with another half byte fault injection,and the probability for this case is 1/64.Furthermore,the measures for KLEIN-64 in resisting the improved DFA are proposed.
文摘Field Programmable Gate Arrays(FPGAs)offer high capability in implementing of complex systems,and currently are an attractive solution for space system electronics.However,FPGAs are susceptible to radiation induced Single-Event Upsets(SEUs).To insure reliable operation of FPGA based systems in a harsh radiation environment,various SEU mitigation techniques have been provided.In this paper we propose a system based on dynamic partial reconfiguration capability of the modern devices to evaluate the SEU fault effect in FPGA.The proposed approach combines the fault injection controller with the host FPGA,and therefore the hardware complexity is minimized.All of the SEU injection and evaluation requirements are performed by a soft-core which realized inside the host FPGA.Experimental results on some standard benchmark circuits reveal that the proposed system is able to speed up the fault injection campaign 50 times in compared to conventional method.
基金supported in part by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund under Grant BE2022032-1National Natural Science Foundation of China under Grant 52277035, Grant 51937006 and Grant 51907028the “SEU Zhishan Young Scholars” Program of Southeast University。
文摘Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.