The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil syste...The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.展开更多
Geosynthetics and deep cement mixed(DCM)soil columns have been widely used to improve soft soil grounds in many countries and regions.This paper presents an experimental study on a geosynthetic-reinforced sand fill ov...Geosynthetics and deep cement mixed(DCM)soil columns have been widely used to improve soft soil grounds in many countries and regions.This paper presents an experimental study on a geosynthetic-reinforced sand fill over marine clay with or without DCM columns under different loadings.Two tests were conducted on the sand fill reinforced with fixed-end and free-end geosynthetics over marine clay under three-stage local loading to investigate the effects of the boundary conditions of geosynthetic reinforcement on reducing settlements.It is observed that the fixed-end geosynthetic sheet is more effective in reducing settlements than the free-end condition under identical local loading.Another test was conducted on the fixed-end geosynthetic-reinforced sand fill over the marine clay improved by DCM columns under single-stage uniform loading.The vertical stresses on the marine clay and on the DCM columns,as well as the tensile strains of the geosynthetic sheet in the overlying sand fill,were measured.The results revealed that the stress concentration ratio increases with an increase in consolidation settlements,and the maximum tensile strain of the geosynthetic sheet occurs near the edge rather than at the center of the top surface of the DCM columns.展开更多
基金Project (No. 50478022) supported by the National Natural Science Foundation of China
文摘The principle and process of parallel seismic (PS) testing for the integrity testing of cemented soil columns are in- troduced in this paper. A three-dimensional (3D) finite element model (FEM) for the pile-soil system is established for impulse responses. Under saturated soil or unsaturated soil condition, several vibrating velocity-time histories at different depths in parallel hole are obtained based on the numerical simulation. It shows that the length of the pile and the one-dimensional (1D) P-wave velocity in the pile can be determined easily from the features of the mentioned velocity-time histories. By examining the slopes of the first arrival time plotted versus depth or the depth where the amplitude of the first arrival significantly decreases, the length of the pile can be determined. The effects of the 3D P-wave propagation through the saturated soil and the defect of the cemented soil column on the velocity-time histories are also investigated.
基金the support of a National State Key Project“973”grant(Grant No.:2014CB047000)(sub-project No.2014CB047001)from Ministry of Science and Technology of the People’s Republic of China,a CRF project(Grant No.:PolyU12/CRF/13E)from Research Grants Council(RGC)of Hong Kong Special Administrative Region Government(HKSARG)of China,and two GRF projects(PolyU 152196/14EPolyU 152796/16E)from RGC of HKSARG of ChinaThe authors also acknowledge the financial supports from Research Institute for Sustainable Urban Development of The Hong Kong Polytechnic University,grants(1-ZVCR,1-ZVEH,4-BCAU,4-BCAW,5-ZDAF,G-YN97)from The Hong Kong Polytechnic University.
文摘Geosynthetics and deep cement mixed(DCM)soil columns have been widely used to improve soft soil grounds in many countries and regions.This paper presents an experimental study on a geosynthetic-reinforced sand fill over marine clay with or without DCM columns under different loadings.Two tests were conducted on the sand fill reinforced with fixed-end and free-end geosynthetics over marine clay under three-stage local loading to investigate the effects of the boundary conditions of geosynthetic reinforcement on reducing settlements.It is observed that the fixed-end geosynthetic sheet is more effective in reducing settlements than the free-end condition under identical local loading.Another test was conducted on the fixed-end geosynthetic-reinforced sand fill over the marine clay improved by DCM columns under single-stage uniform loading.The vertical stresses on the marine clay and on the DCM columns,as well as the tensile strains of the geosynthetic sheet in the overlying sand fill,were measured.The results revealed that the stress concentration ratio increases with an increase in consolidation settlements,and the maximum tensile strain of the geosynthetic sheet occurs near the edge rather than at the center of the top surface of the DCM columns.