期刊文献+
共找到493篇文章
< 1 2 25 >
每页显示 20 50 100
Shear resistance characteristics and influencing factors of root-soil composite on an alpine metal mine dump slope with different recovery periods
1
作者 PANG Jinghao LIANG Shen +5 位作者 LIU Yabin LI Shengwei WANG Shu ZHU Haili LI Guorong HU Xiasong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期835-849,共15页
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha... Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil. 展开更多
关键词 Alpine mine dump Artificial vegetation restoration period rooted soil Shear resistance characteristics root traits soil physical properties
下载PDF
Soil physical properties and maize root growth under different tillage systems in the North China Plain 被引量:13
2
作者 Baizhao Ren Xia Li +3 位作者 Shuting Dong Peng Liu Bin Zhao Jiwang Zhang 《The Crop Journal》 SCIE CAS CSCD 2018年第6期669-676,共8页
The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient co... The standard cultivation system in the North China Plain is double cropping of winter wheat and summer maize. The main effects of this cultivation system on root development and yield are decreases in soil nutrient content and depth of the plow layer under either long-term no-tillage or rotary tillage before winter wheat sowing and no tillage before summer maize sowing. In this study, we investigated the combined effects of tillage practices before winter wheat and summer maize sowing on soil properties and root growth and distribution in summer maize. Zhengdan 958(ZD958) was used as experimental material, with three tillage treatments: rotary tillage before winter wheat sowing and no tillage before summer maize sowing(RTW + NTM), moldboard plowing before winter wheat sowing and no tillage before summer maize sowing(MPW + NTM), and moldboard plowing before winter wheat sowing and rotary tillage before summer maize sowing(MPW + RTM).Tillage practice showed a significant(P < 0.05) effect on grain yield of summer maize. Grain yields under MPW + RTM and MPW + NTM were 30.6% and 24.0% higher, respectively, than that under RTW + NTM. Soil bulk density and soil penetration resistance decreased among tillage systems in the order RTW + NTM > MPW + NTM > MPW + RTM. Soil bulk densities were 3.3% and 515% lower in MPW + NTM and MPW + RTM, respectively, than that in RTW + NTM, and soil penetration resistances were respectively 17.8% and 20.4% lower,across growth stages and soil depths. Root dry matter and root length density were highest under MPW + RTM, with the resulting increased root activity leading to a yield increase of summer maize. Thus the marked effects of moldboard plowing before winter-wheat sowing on root length density, soil penetration resistance, and soil bulk density may contribute to higher yield. 展开更多
关键词 TILLAGE system SUMMER MAIZE soil PHYSICAL properties root
下载PDF
Dynamic of Soil Microorganisms from Root Region of Ginseng with Different Growing Years 被引量:16
3
作者 李勇 刘时轮 +2 位作者 易茜茜 傅俊范 丁万隆 《Agricultural Science & Technology》 CAS 2009年第6期141-143,共3页
Objective To see the dynamic of fungi, bacilli and actinomyces communities from root region of ginseng with different growing years.Method With ginseng root region soils from several sampling sites of Jilin Province a... Objective To see the dynamic of fungi, bacilli and actinomyces communities from root region of ginseng with different growing years.Method With ginseng root region soils from several sampling sites of Jilin Province as materials, concentrations of fungi, bacilli and antinomyces were evaluated by spread-plate method. Result Though there are differences on statistic data among soil samples, commonly with the increasing of growing years, concentration of fungi in ginseng root region increased, which were on the contrary for bacilli and antinomyces, and bacilli changed even more significant than antinomyces. Conclusion Concentrations of soil microorganisms can be influenced by soil type, planting mode and growing years simultaneously, but growing years influenced even more significantly. 展开更多
关键词 GINSENG root region soil FUNGI BACILLI ACTINOMYCES
下载PDF
Influence of CO_2 Doubling on Water Transport Process at Root/Soil Interface of Pinus sylvestris var. sylvestriformis Seedlings 被引量:3
4
作者 韩士杰 张军辉 +2 位作者 周玉梅 王琛瑞 邹春静 《Acta Botanica Sinica》 CSCD 2001年第4期385-388,共4页
Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductanc... Water transport at the root/soil interface of 1 year old Pinus sylvestris Linn. var. sylvestriformis (Takenouchi) Cheng et C. D. Chu seedlings under CO 2 doubling was studied by measuring soil electric conductance to survey soil water profiles and comparing it with root distribution surveyed by soil coring and root harvesting in Changbai Mountain in 1999. The results were: (1) The profiles of soil water content were adjusted by root activity. The water content of the soil layer with abundant roots was higher. (2) When CO 2 concentration was doubled, water transport was more active at the root/soil interface and the roots were distributed into deeper layer. It was shown in this work that the method of measuring electric conductance is an inexpensive, non_destructive and relatively sensitive way for underground water transport process. 展开更多
关键词 CO 2 doubling Pinus sylvestris var. sylvestriformis seedlings root/soil interface water transport electric conductance of soil
下载PDF
Eco-geochemical Characteristics of Muskmelon Root Soil in Planting Region of Hetao Irrigation Area of Inner Mongolia
5
作者 侯俊琳 《Agricultural Science & Technology》 CAS 2016年第9期2147-2151,共5页
[Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide s... [Objective] The aim was to evaluate the eco-geochemical characteristics and geochemistry conditions of root soil in muskmelon planting area, evaluate the soil environment quality in Hetao irrigation area and provide scientific basis for the musmelon planting in this area. [Method] Root system soil sample and plow pan sample were collected from the main muskmelon planting area in Hetao irrigation area, so as to analyze the contents of heavy metal elements. By comparing with the Soft Environmental Quality Standard (GB15618-1995), the research explored whether the heavy metal elements in root system met the national standard. [Result] Heavy metal elements in root system soil had the maximum content in recession area of Yellow River, followed by saline soils. The content of heavy metal elements in chestnut-brown soil was the minimum. Harmful elements As, Cd, Hg, F and Pb in anthropogenic-alluvial soil of Hetao irrigation area showed enrichment characteristics in earth surface, with zonality vertically. Trace elements Cu and Zn, and beneficial elements P, K20, CaO, MgO and Se showed depletion. In anthropogenic-aUuvial soil of Ulansuhai of the Yellow River, harmful elements As and Cd showed significant enrichment in root system soil, while other elements showed depletion or was close to background value. In soil of plow pan, both beneficial component and harmful component showed enrichment characteristics. [Conclusion] Hetao irrigation area has the ideal geochemical conditions and heavy metal elements in muskmelon area meet the national standards. 展开更多
关键词 root system soil Anthropogenic-alluvial soil Saline soil Eco-geochemical characteristics
下载PDF
Influence of the roots of mixed-planting species on the shear strength of saline loess soil 被引量:11
6
作者 LIU Ya-bin HU Xia-song +2 位作者 YU Dong-mei ZHU Hai-li LI Guo-rong 《Journal of Mountain Science》 SCIE CSCD 2021年第3期806-818,共13页
In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L... In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L.,Elymus nutans Griseb.,Puccinellia distanx(L.),and Poa pratensis L.)and one shrub species(Caragana korshinskii Kom.)were investigated on the shear strength characteristics of saline loess soil.The root distribution characteristics were assessed via a survey when the plants grew for one year.The effects of the root biomass density,the root mass ratio(RMR)of the fine roots to the coarse roots,the moisture content,and the salt content on the shear strength index of the rooted soil were analyzed via a triaxial compression test,and the mechanism of these effects was discussed.The results indicate that the biomass density decreased linearly with increasing depth.The RMR initially decreased with depth and then increased,exhibiting in a quadratic relationship.The cohesion of the rooted soil increased linearly as the biomass density increased.The cohesion of the rooted soil initially increased with increasing RMR and salt content,and then it decreased.The turning point of the cohesion occurred when the RMR was 0.6 and the salt content was 1.18%.The internal friction angle of the rooted soil initially increased with biomass density and then decreased,and the turning point of the internal friction angle occurred when the biomass density was 0.015 g/cm3.The relationships between the internal friction angle of the rooted soil and the RMR and salt content were exponential incremental and linear subtractive relationship,respectively.Both the cohesion and the internal friction angle of the rooted soil linearly decreased with increasing moisture content. 展开更多
关键词 Xining Basin Herb species Shrub species rooted soil Saline loess soil soil reinforcement Shear strength index
下载PDF
Estimation of soil reinforcement by the roots of four postdam prevailing grass species in the riparian zone of Three Gorges Reservoir, China 被引量:17
7
作者 ZHONG Rong-hua HE Xiu-bin +5 位作者 BAO Yu-hai TANG Qiang GAO Jin-zhang YAN Dan-dan WANG Ming-feng LI Yu 《Journal of Mountain Science》 SCIE CSCD 2016年第3期508-521,共14页
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank... Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(&gt;10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin. 展开更多
关键词 Bank stabilization root area ratio root tensile strength soil reinforcement Riparian zone Three Gorges Reservoir
下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
8
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
下载PDF
Production Performance of Root Systems of Four Forage Legume Species and Their Development Characteristics in Loess Plateau,China 被引量:1
9
作者 Zhang Jianquan Zhang Jiyu +2 位作者 Wang Yanrong Xie Wengang Li Juncheng 《Animal Husbandry and Feed Science》 CAS 2014年第4期165-169,共5页
Production performance of four forage legumes species of Medicago sativa,Onobrychis viciifolia,Lotus corniculatus and Galega officinalis were determined,including plant height,above-ground biomass per unit area,tiller... Production performance of four forage legumes species of Medicago sativa,Onobrychis viciifolia,Lotus corniculatus and Galega officinalis were determined,including plant height,above-ground biomass per unit area,tillers per unit area,fertile tillers per unit area,shoot /leaf ratio and fresh /dry matter weight ratio,and the distribution characteristics of their root systems in 0- 100 cm soil layers with 10 cm interval were studied. Results showed that the average aboveground fresh biomass(4 a and 5 a) of four forage legumes species successively were L. corniculatus 】 M. sativa 】 O. viciifolia 】 G. officinalis. The average plant heights in two years successively were O. viciifolia 】 M. sativa 】 G. officinalis 】 L. corniculatus. Tillers per unit area of four forage legume species in two years successively were M. sativa 】 L. corniculatus 】 O. viciifolia 】 G. officinalis. Fertile tillers per unit area in two years were O. viciifolia 】 M. sativa 】 L. corniculatus 】 G. officinalis. Average shoot /leaf ratio in two years were G. officinalis 】 M. sativa 】 O. viciifolia 】 L. corniculatus. Average moisture contents of four forage legume species in two years successively were G. officinalis 】 L. corniculatus 】 M. sativa = O. viciifolia. The distribution characteristics of root systems of four forage legumes species in 0- 100 cm soil layers were as follows: the root weights of M. sativa in 0- 40 cm soil layers accounted for about 98. 3% of total root weight,that of O. viciifolia in 0- 30 cm soil layers was 85. 8%,that of L. corniculatus in 0- 10 cm soil layers was 80%,and that of G. officinalis in 0- 40 cm soil layers was 81. 4%. The results suggested that L. corniculatus was suited to plant in slighter degraded pasture to control water and soil erosion in early stage,G. officinalis with strong lateral roots was adapted to degraded grassland in the Loess Plateau where soil nutrient was poor,while O. viciifolia and M. sativa with potentially strong main root were fit for water and soil conservation in the losses plateau for long term. 展开更多
关键词 Loess Plateau Forage legumes BIOMASS Production performance root system soil conservation
下载PDF
Optimal root system strategies for desert phreatophytic seedlings in the search for groundwater 被引量:2
10
作者 LI Changjun ZENG Fanjiang +4 位作者 ZHANG Bo LIU Bo GUO Zichun GAO Huanhuan TIYIP Tashpolat 《Journal of Arid Land》 SCIE CSCD 2015年第4期462-474,共13页
Desert phreatophytes are greatly dependent on groundwater, but how their root systems adapt to different groundwater depths is poorly understood. In the present study, shoot and root growths of Alhagi sparsifolia Shap... Desert phreatophytes are greatly dependent on groundwater, but how their root systems adapt to different groundwater depths is poorly understood. In the present study, shoot and root growths of Alhagi sparsifolia Shap. seedlings were studied across a gradient of groundwater depths. Leaves, stems and roots of different orders were measured after 120 days of different groundwater treatments. Results indicated that the depth of soil wetting front and the vertical distribution of soil water contents were highly controlled by groundwater depths. The shoot growth and biomass of A. sparsifolia decreased, but the root growth and rooting depth increased under deeper groundwater conditions. The higher ratios of root biomass, root/shoot and root length/leaf area under deeper groundwater conditions implied that seedlings of A. sparsifolia economized carbon cost on their shoot growths. The roots of A. sparsifolia distributed evenly around the soil wetting fronts under deeper groundwater conditions. Root diameters and root lengths of all orders were correlated with soil water availabilities both within and among treatments. Seedlings of A. sparsifolia produced finer first- and second-order roots but larger third- and fourth-order roots in dry soils. The results demonstrated that the root systems of desert phreatophytes can be optimized to acquire groundwater resources and maximize seedling growth by balancing the costs of carbon gain. 展开更多
关键词 desert phreatophytes root system strategy groundwater depth soil water biomass partition
下载PDF
Firm Roots in Tibetan Soil
11
作者 YEXEI KANGZHOI 《China's Tibet》 1995年第5期26-27,共2页
Firm Roots in Tibetan SoilFirmRootsinTibetanSoil¥YEXEIKANGZHOISincethepeacefulliberationofTibetin1951,numero... Firm Roots in Tibetan SoilFirmRootsinTibetanSoil¥YEXEIKANGZHOISincethepeacefulliberationofTibetin1951,numerouspeoplehavebeeni... 展开更多
关键词 Firm roots in Tibetan soil
下载PDF
Mechanisms for the Movement of Fe,Mn,Cn and Zn to Plant Roots in Loessal So il and Lon Soil
12
作者 XU MINGGANG, ZHANG YIPING, SUN BENHUA(Department of Soil Science and Agrochemistry, Northwestern Agricultural University, Yangling, Shaanxi712100(China))( 《Pedosphere》 SCIE CAS CSCD 1994年第3期245-254,共10页
The pot experiments were conducted in the artificial climate laboratories to determine the relativeimportance of mass flow and diffusion in supplying Fe, Mn, Cu and Zn to wheat, soybean and maize plantsgrowing in loes... The pot experiments were conducted in the artificial climate laboratories to determine the relativeimportance of mass flow and diffusion in supplying Fe, Mn, Cu and Zn to wheat, soybean and maize plantsgrowing in loessal soil and lou soil. It was found that the calculated relative contribution of mass flow ofiron, manganese, copper and zinc to plant uptake varied from 5% to more than 100%,depending on the cropspecies and soil types as well as plant growth stage, soil moisture, atmosphere humidity, etc. The results alsoshowed that the major transportation mechanisms of these micronutrients in soil-root system varied with thecrop and its growth, climate and soil, significantly. In general, mass flow was more important for Cu andZn and diffusion was more significant for Fe and Mn at the seedling stage. 展开更多
关键词 diffusion iron MANGANESE mass flow soil-root system
全文增补中
Analysis for Soil Characteristics of Degraded Grassland on Alpine Meadow 被引量:10
13
作者 杨元武 李希来 周华坤 《Agricultural Science & Technology》 CAS 2011年第8期1221-1225,共5页
[Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated ... [Objective]The aim of this study is to explore the effects of grassland degradation on soil physical and chemical properties.[Method]The ratio of plant root to soil and soil texture on Alpine Meadow were investigated in this study,and soil available N,P,K,Cu,Zn,organic matter and pH value were also analyzed by routine analysis of soil nutrients in different degraded grasslands.[Result]With the intensification of degraded gradient and the soil depth,the ratio of plant root to soil was decreased gradually.The highest ratio of plant root to soil was in 0-10 cm depth of soil in grassland with different degraded gradients,while its ratio of plant root to soil changed from 0.001 to 0.040 with soil type of loam.Soil chemical characteristic changed in different degraded gradients.The content of available N,P,K reduced significantly with the soil depth and the intensification of degraded gradients.The content of Cu and Zn was relatively lack in degraded grassland.[Conclusion]There is no significant correlation between nutrition content or pH value and the succession degree of degraded grassland. 展开更多
关键词 Alpine meadow Degraded grassland Ratio of plant root to soil soil texture Chemical characteristics
下载PDF
黄河源区4种不同禁牧条件对草地根-土复合体力学特征的影响
14
作者 梁晓娜 刘昌义 +5 位作者 胡夏嵩 付江涛 邢光延 何伟鹏 岳磊 吕伟涛 《水土保持研究》 北大核心 2025年第2期224-233,共10页
[目的]探讨黄河源区高寒环境禁牧条件对原生草地和退化草地根-土复合体力学强度影响,阐明禁牧对植被恢复的作用,为黄河源区草地恢复以及地质灾害防治提供理论参考。[方法]选取黄河源河南县地区未禁牧、禁牧期1 a、禁牧期4 a、禁牧期10 a... [目的]探讨黄河源区高寒环境禁牧条件对原生草地和退化草地根-土复合体力学强度影响,阐明禁牧对植被恢复的作用,为黄河源区草地恢复以及地质灾害防治提供理论参考。[方法]选取黄河源河南县地区未禁牧、禁牧期1 a、禁牧期4 a、禁牧期10 a这4种工况下的草地作为研究对象,通过直剪试验得到复合体黏聚力和内摩擦角,环刀称重法得到密度,烘干法得到含水率,采用SPSS软件分析了不同禁牧期草地植物根径、土体密度、土体含水率、含根量与根-土复合体黏聚力之间的相关关系。[结果](1)根-土复合体黏聚力与含水率之间呈显著负相关关系(p<0.05),未禁牧草地植物根径与根-土复合体黏聚力之间呈现极显著正相关关系(R=0.68,p<0.01),根数与根-土复合体黏聚力之间呈极显著正相关关系(R=0.85,p<0.01);1 a禁牧期土体密度与根-土复合体黏聚力c值之间呈显著正相关关系(R=0.56,p<0.05)。(2)随着禁牧年限增加,原生与退化草地土体平均黏聚力c值呈增大的变化趋势,其中10 a禁牧期原生草地黏聚力c值较未禁牧原生草地平均黏聚力增加幅度为6.39%;10 a禁牧期退化草地黏聚力c值较未禁牧平均黏聚力增加幅度为8.16%。[结论]实施禁牧提高黄河源区草地根-土复合体黏聚力,有利于防治黄河源区草地退化及水土流失。 展开更多
关键词 黄河源区 根-土复合体 禁牧期 原生草地 退化草地 抗剪强度指标
下载PDF
黄土丘陵沟壑区粉砂壤土崩解性能变化及其影响因子试验研究——以王茂沟小流域为例
15
作者 张思靖 马建业 +5 位作者 李占斌 李鹏 陈亚军 吕小永 李海波 代启安 《生态学报》 北大核心 2025年第1期91-102,共12页
土壤崩解是土壤可蚀性的重要表征指标,在阐明土壤侵蚀机理和构建侵蚀模型方面起着重要作用。尽管目前有关植物根系对土壤崩解的研究取得了一定的进展,但是土壤崩解受到根系和土壤理化性质的双重影响,而有关根系和土壤理化性质对土壤崩... 土壤崩解是土壤可蚀性的重要表征指标,在阐明土壤侵蚀机理和构建侵蚀模型方面起着重要作用。尽管目前有关植物根系对土壤崩解的研究取得了一定的进展,但是土壤崩解受到根系和土壤理化性质的双重影响,而有关根系和土壤理化性质对土壤崩解的协同作用仍缺乏深入量化研究。以王茂沟小流域5个土地利用下的原状土样作为研究对象,基于崩解试验测定土壤崩解参数,并分析其与根系和土壤理化性质的相关性及主控因子,量化土壤崩解的变化机制,得到如下结论:(1)综合崩解速率、崩解比速率和崩解量三个崩解指标,不同土地利用下,土壤的崩解性均呈现出草地<坡耕地<梯田<果园<坝地;(2)利用VPA分析和偏最小二乘路径分析,解释了土壤理化性质和根系特征及其协同作用对土壤崩解性的贡献并分析其量化关系。结果表明,含根土体中,根系对土壤崩解的直接效应强于间接效应,其直接贡献为16%,较土壤理化性质(16.4%)偏低,但较两者的协同效应偏高62.5%。不同土地利用下,土壤崩解性能的变化主要以土壤理化性质直接影响为主;(3)Spearman相关分析和RDA分析表明,与土壤崩解相关性最高的根系因子为RLD,土壤因子为粉粒,所有环境因子中以RLD的效应最强。不同土地利用下,影响土壤崩解性能的主控因子也存在差异。研究结果可为黄土丘陵沟壑区生态建设条件下的土壤崩解研究和侵蚀机理的解析提供参考,对于黄土高原生态脆弱区的生态修复和生态功能的维持具有重要意义。 展开更多
关键词 黄土丘陵沟壑区 不同土地利用 植物根系 土壤理化性质 土壤崩解
下载PDF
放牧对荒漠草原区植被、土壤及根系的影响研究综述
16
作者 赵文迪 秦富仓 +4 位作者 杨振奇 郭建英 要振宇 赵天启 刘心宇 《内蒙古林业调查设计》 2025年第1期97-101,共5页
荒漠草原区是我国北方防沙带的重要组成部分,因气候变化和人类活动等因素的综合影响,导致该区域出现生产力下降、草场沙化、风蚀沙害等突出问题。国内专家学者围绕草地生产力、放牧梯度实验、草场沙化恢复等方面开展了大量研究,但仍存... 荒漠草原区是我国北方防沙带的重要组成部分,因气候变化和人类活动等因素的综合影响,导致该区域出现生产力下降、草场沙化、风蚀沙害等突出问题。国内专家学者围绕草地生产力、放牧梯度实验、草场沙化恢复等方面开展了大量研究,但仍存在部分科学技术难题尚未解决,如放牧对土壤及根系的潜在影响、放牧-土壤-风蚀-水蚀间的联动机制等问题。文章通过梳理国内外相关文献,明确已有研究基础,挖掘研究薄弱点,提出未来荒漠草原区关于放牧与植被-根系间的关键科学问题,为制定合理的草地资源利用政策提供理论依据。 展开更多
关键词 放牧强度 荒漠草原区 土壤分离能力 土壤性质 根系性状
下载PDF
中国南北方植物对土壤加固机制的差异性
17
作者 王丹 马超 +4 位作者 王云琦 王玉杰 吕柏伟 徐淑蕾 朱锦奇 《农业工程学报》 EI CAS CSCD 北大核心 2024年第8期98-106,共9页
为深入分析植物对土壤加固的影响效益和机制,该研究选取重庆缙云山地区和陕西延安黄土丘陵区种植一年的乔木(火炬树、榆树)和灌木(荆条、酸枣),测定其根系形态、力学参数和土壤的抗剪强度,通过RBMw模型计算根系固土效益,综合评估不同植... 为深入分析植物对土壤加固的影响效益和机制,该研究选取重庆缙云山地区和陕西延安黄土丘陵区种植一年的乔木(火炬树、榆树)和灌木(荆条、酸枣),测定其根系形态、力学参数和土壤的抗剪强度,通过RBMw模型计算根系固土效益,综合评估不同植物的固土效能和贡献度。结果表明:2地种植的物种平均根直径的差异不显著(P>0.05),重庆种植的乔木(火炬树、榆树)的根长、分叉数和根尖数显著高于延安,灌木未出现显著差异(P<0.05)。根系的抗拉强度与直径都符合负幂函数关系,其中平均抗拉强度最大的为荆条。除荆条外,同种植物根系的抗拉强度并未因不同地区的种植产生显著差异。4个植物种根系的固土效率为0.65~4.12 kPa,各物种间存在显著差异(P<0.05)。重庆2种乔木种植下的根土复合体有效黏聚力高于裸地(约10%),灌木种植下则普遍略低于裸地。除酸枣外,种植于重庆的4种植物的根系固土作用和效率都显著的高于延安(P<0.05)。研究结果可为不同地区固土护坡的树种选择提供理论依据。 展开更多
关键词 土壤 根系 植物 抗拉特性 抗剪强度 综合固土能力
下载PDF
宁夏南部黄土丘陵区3种草本根土复合体抗冲性及其与影响因素的关系
18
作者 万海霞 许浩 +5 位作者 王月玲 韩新生 董立国 郭永忠 安钰 贾廷民 《水土保持研究》 CSCD 北大核心 2024年第3期115-127,共13页
[目的]明确宁夏南部黄土丘陵区3种草本根土复合体抗冲性差异及其与相关影响因素的关系,为研究区生态建设质量提升及植被优化配置提供理论依据。[方法]以研究区常见草本百里香、星毛委陵菜、长芒草根土复合体为研究对象,采用室内原状土... [目的]明确宁夏南部黄土丘陵区3种草本根土复合体抗冲性差异及其与相关影响因素的关系,为研究区生态建设质量提升及植被优化配置提供理论依据。[方法]以研究区常见草本百里香、星毛委陵菜、长芒草根土复合体为研究对象,采用室内原状土水槽冲刷法,并利用LA-S根系扫描分析系统,研究不同草本0—15 cm土层根土复合体抗冲性能及其与根、土的关系。[结果](1) 3种草本0—15 cm土层根土复合体抗冲性大小为星毛委陵菜(53.7 L·h/g)>百里香(36.5 L·h/g)>长芒草(14.2 L·h/g),星毛委陵菜根土复合体抗冲性最强。(2) 3种草本根系根长密度、表面积密度、体积密度和比根长分别为4.25~10.56 cm/cm^(3),42.95~111.51 mm^(2)/cm^(3),5.04~17.94 mm^(3)/cm^(3),35.06~67.96 m/g,根长密度等参数百里香明显大于其他草本。(3)各草本根系分布土壤的有机碳含量百里香(1.437%)>星毛委陵菜(1.290%)>长芒草(0.430%)。根系土壤黏粒含量百里香是星毛委陵菜、长芒草的1.14倍、1.20倍。3种草本土壤团聚体参数MWD,GMD,R_(>0.25)分别为13.80~18.23 mm, 7.15~11.11 mm, 43.06%~70.05%,各指标星毛委陵菜最大。(4)根系、土壤均能直接或间接、单独或共同影响根土复合体抗冲性。百里香土壤黏粒、粉粒、砂粒及团聚体直接影响土体抗冲性,其大部分根系还通过影响土壤机械组成和有机碳含量间接影响抗冲性。星毛委陵菜土壤粉粒和大部分细根直接影响土体抗冲性,其0~0.5 mm根、土壤黏粒、砂粒还通过影响土壤团聚体等间接影响抗冲性。长芒草土壤砂粒、0~1.0 mm根直接影响土体抗冲性,其特定细根还通过影响土壤团聚体和有机碳含量间接影响抗冲性。[结论]3种草本根土复合体抗冲性大小有明显差异,根系、土壤均能影响其抗冲性能,在宁夏南部黄土丘陵区进行生态建设应考虑不同草本(植被)的抗冲性能,并在改善相关影响因素的基础上加以科学配置。 展开更多
关键词 土壤 侵蚀 草本根土复合体 抗冲性 根系
下载PDF
毛乌素沙地不同植被恢复类型的土壤碳水效应 被引量:1
19
作者 王德富 董凌勃 +2 位作者 李澳 于志静 邓蕾 《水土保持学报》 CSCD 北大核心 2024年第3期101-110,120,共11页
[目的]探讨不同植被恢复类型下土壤有机碳和水分含量特征及其关系,为毛乌素沙地植被恢复类型的选取提供科学依据。[方法]以毛乌素沙地自然恢复草地及沙蒿、沙柳、沙蒿×沙柳(灌灌混交)、樟子松、沙柳×樟子松(乔灌混交)为研究对... [目的]探讨不同植被恢复类型下土壤有机碳和水分含量特征及其关系,为毛乌素沙地植被恢复类型的选取提供科学依据。[方法]以毛乌素沙地自然恢复草地及沙蒿、沙柳、沙蒿×沙柳(灌灌混交)、樟子松、沙柳×樟子松(乔灌混交)为研究对象,并以裸沙地为对照,分析不同植被恢复类型对0-5.0 m土层土壤剖面碳、水的影响及其相关性。[结果](1)植被恢复增加土壤有机碳含量,沙柳×樟子松、樟子松、草地、沙蒿×沙柳、沙柳、沙蒿依次降低,0—0.2 m土层显著高于深层,表现为表聚效应;随着土层深度的增加,各植被类型的有机碳含量逐渐降低;沙蒿、沙柳、沙蒿×沙柳在0.8—2.2 m土层范围内表现为碳损失。(2)不同植被恢复类型在深层均存在不同程度的水分亏缺,主要集中在1.0—3.0 m土层,具体亏缺程度为沙柳×樟子松>樟子松>沙蒿×沙柳>沙柳>草地>沙蒿。(3)根系是影响土壤有机碳含量和水分消耗的主要因素;土壤有机碳含量与土壤含水量在0—5.0 m土层范围内负相关。[结论]植被固存有机碳以消耗深层土壤水分为代价,沙柳×樟子松固定同等单位量的碳消耗水分最少。因此,从土壤固碳和保水2个角度同时考虑,沙柳×樟子松在毛乌素沙地的植被恢复中具有较好的恢复效果。 展开更多
关键词 植被恢复 土壤有机碳 土壤水分 根系 毛乌素沙地
下载PDF
麦茬土壤残留氮对夏大豆根瘤、根系发育及产量的影响
20
作者 王晶 王天舒 +5 位作者 王丽 周新雨 李庭宇 孟熠黎 黄新阳 尧水红 《中国农业科学》 CAS CSCD 北大核心 2024年第23期4712-4724,共13页
【目的】研究黄淮海平原冬小麦-夏大豆轮作制度麦茬土壤残留氮对后茬大豆土壤硝态氮含量与分布的影响,明晰大豆季土壤硝态氮动态变化与根瘤、根系发育的相互关系,揭示麦茬残留氮和大豆季土壤氮动态变化对大豆产量的影响途径。【方法】... 【目的】研究黄淮海平原冬小麦-夏大豆轮作制度麦茬土壤残留氮对后茬大豆土壤硝态氮含量与分布的影响,明晰大豆季土壤硝态氮动态变化与根瘤、根系发育的相互关系,揭示麦茬残留氮和大豆季土壤氮动态变化对大豆产量的影响途径。【方法】根据黄淮海一年两熟区麦茬土壤残留氮水平,设置土壤硝态氮含量为5.25 mg·kg^(-1)(N_(5))、10.00 mg·kg^(-1)(N_(10))、20.00 mg·kg^(-1)(N_(20))、40.00 mg·kg^(-1)(N_(40))和60.00 mg·kg^(-1)(N_(60))共5个残留氮水平,于2021—2022年连续两年开展田间微区模拟试验。于大豆播前、六叶期、盛花期和鼓粒初期测定根层(0—40 cm)土壤硝态氮含量,六叶期和鼓粒初期分析大豆地上部和地下部生物量、根瘤干重以及根系构型指标,收获季全小区测产计算大豆产量。【结果】残留氮增加大豆季土壤硝态氮含量,且随降雨迅速下移,2021和2022年处理间根层土壤硝态氮含量差异分别延续至鼓粒初期和六叶期。2021年大豆六叶期各处理根层土壤硝态氮含量分别为23.44—24.42、24.98—28.07、16.99—28.21、23.81—45.34、33.37—53.78 mg·kg^(-1);2022年分别为7.63—7.84、8.02—8.86、8.32—8.71、9.43—10.01、15.40—17.92 mg·kg^(-1)。在大豆生育期内,六叶期的根层土壤硝态氮含量与大豆产量显著相关,土壤硝态氮含量17.83—40.33 mg·kg^(-1)时大豆产量随其升高而增加;7.63—17.83或40.33—53.78 mg·kg^(-1)时产量随其升高而降低;7.63或40.33 mg·kg^(-1)时产量最高。六叶期,根层土壤硝态氮含量增加提高地上部生物量、根系面积和根系宽度,但降低地下部生物量、根瘤干重、侧根数和根尖数。鼓粒初期,地上部生物量、根表面积、根系宽度和根尖数仍受六叶期根层土壤硝态氮含量的影响,随其升高而呈现先降低后升高再降低的变化趋势。受六叶期根层土壤硝态氮含量显著影响的根瘤和根系指标中,根瘤干重、根表面积、根系宽度和根尖数是影响大豆产量的主要因素。【结论】麦茬土壤残留氮在时间和空间上持续影响后茬大豆季土壤氮水平,并通过影响大豆关键生育时期(六叶期)的根层土壤硝态氮含量调节大豆根瘤和根系发育,进而影响其地上部生物量及产量。建议根据残留氮水平适量、适期施氮,控制麦茬大豆苗期根层硝态氮含量7.63或40.33 mg·kg^(-1),以提升氮肥利用效率、获得较高产量。 展开更多
关键词 小麦-大豆轮作 土壤硝态氮 土壤残留氮 根瘤 根系构型 大豆产量
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部