期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Cyclic Lateral Responses of Monopiles Considering the Influence of Pile−Soil Relative Stiffness in Sand 被引量:1
1
作者 WANG Yang ZHU Ming-xing +3 位作者 GONG Wei-ming DAI Guo-liang WU Jin-biao ZHU Wen-bo 《China Ocean Engineering》 SCIE EI CSCD 2022年第2期247-257,共11页
The existing studies have primarily focused on the effect of cyclic load characteristics(namely,cyclic load ratio and amplitude ratio)on cyclic lateral response of monopiles in sand,with little attention paid to the e... The existing studies have primarily focused on the effect of cyclic load characteristics(namely,cyclic load ratio and amplitude ratio)on cyclic lateral response of monopiles in sand,with little attention paid to the effect of pile−soil relative stiffness(K_(R)).This paper presents a series of 1-g cyclic tests aimed at improving understanding of the cyclic lateral responses of monopiles under different pile−soil systems.These systems are arranged by two model piles with different stiffness,including four different slenderness ratios(pile embedded length,L,normalized by diameter,D)under medium dense sand.The K_(R)-values are calculated by a previously proposed method considering the real soil stress level.The test results show that the lateral accumulation displacement increases significantly with the increment of the K_(R)-value,while the cyclic secant stiffness performs inversely.The maximum pile bending moment increases with the cycle number for the rigid pile−soil system,but shows a decreasing trend in the flexible system.For an uppermost concern,an empirical model is proposed to predict the accumulated displacement of arbitrary pile−soil systems by combining the results from this study with those from previous experimental investigations.The validity of the proposed model is demonstrated by 1-g and centrifuge tests. 展开更多
关键词 MONOPILE 1-g model test lateral cyclic loading SAND pile−soil relative stiffness prediction model
下载PDF
Stochastic analysis of excavation-induced wall deflection and box culvert settlement considering spatial variability of soil stiffness
2
作者 Ping Li Shiwei Liu +2 位作者 Jian Ji Xuanming Ding Mengdie Bao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3256-3270,共15页
In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due ... In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations. 展开更多
关键词 Three-dimensional(3D) Geostatistical analysis Random finite element modelling(FEM) Spatial variability of soil stiffness
下载PDF
A numerical model for pipelaying on nonlinear soil stiffness seabed 被引量:2
3
作者 昝英飞 Chi YANG +2 位作者 韩端锋 袁利毫 李志刚 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第1期10-22,共13页
The J-lay method is regarded as one of the most feasible methods to lay a pipeline in deep water and ultra-deep water. A numerical model that accounts for the nonlinear soil stiffness is developed in this study to eva... The J-lay method is regarded as one of the most feasible methods to lay a pipeline in deep water and ultra-deep water. A numerical model that accounts for the nonlinear soil stiffness is developed in this study to evaluate a J-lay pipeline. The pipeline considered in this model is divided into two parts: the part one is suspended in water, and the part two is laid on the seabed. In addition to the boundary conditions at the two end points of the pipeline, a special set of the boundary conditions is required at the touchdown point that connects the two parts of the pipeline. The two parts of the pipeline are solved by a numerical iterative method and the finite difference method, respectively. The proposed numerical model is validated for a special case using a catenary model and a numerical model with linear soil stiffness. A good agreement in the pipeline configuration, the tension force and the bending moment is obtained among these three models. Furthermore, the present model is used to study the importance of the nonlinear soil stiffness. Finally, the parametric study is performed to study the effect of the mudline shear strength, the gradient of the soil shear strength, and the outer diameter of the pipeline on the pipelaying solution. 展开更多
关键词 pipeline nonlinear soil stiffness numerical method pipe-soil interaction
原文传递
Reliability analysis of large-diameter high-grade-steel natural gas pipelines under fault action
4
作者 Xiao-Ting Gu Xue-Rui Zang +4 位作者 Zhen-Yong Zhang Peng Yang Wen-Zhen Miao Ping Cao Bin Zhao 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2387-2398,共12页
There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first establ... There are a lot of researches on qualitative aseismatic measures for buried gas pipeline crossing movable faults.But a few of them are quantitative,especially in the size and shape of the trench.The paper first established the finite element model of the strain of buried pipeline crossing a fault which effected by the size and shape of the trench.And it obtained new soil spring stiffness which considered different buried depth,bottom width of trench,trench slope and elastic modulus of soil.The mechanical analysis model of pipeline is established,and the limit state equation of pipeline is fitted.The reliability and sensitivity of the natural gas pipeline under fault action are analysed by a Monte Carlo method,and the error and accuracy are verified.When the pipeline is under tension,the sensitivity from large to small is buried depth,sand friction angle,pipe diameter,pipeline displacement,trench bottom width,trench depth,clay cohesion,trench slope and clay friction angle;when the pipeline is under pressure,the trench depth and clay cohesion have great influence.The findings of this study provide a reference for pipeline design and safety evaluation under fault action. 展开更多
关键词 Trench parameters Natural gas pipeline FAULT soil-pipeline interaction soil spring stiffness
下载PDF
Perturbation analysis on post-buckling behavior of pile
5
作者 赵明华 贺炜 王泓华 《Journal of Central South University of Technology》 EI 2007年第6期853-857,共5页
The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to t... The nonlinear large deflection differential equation, based on the assumption that the subsoil coefficient is the 2nd root of the depth, was established by energy method. The perturbation parameter was introduced to transform the equation to a series of linear differential equations to be solved, and the deflection function according with the boundary condition was considered. Then, the nonlinear higher-order asymptotic solution of post-buckling behavior of a pile was obtained by parameter-substituting. The influencing factors such as bury-depth ratio and stiffness ratio of soil to pile, slenderness ratio on the post-buckling behavior of a pile were analyzed. The results show that the pile is more unstable when the bury-depth ratio and stiffness ratio of soil to pile increase, and although the buckling load increases with the stiffness of soil, the pile may ruin for its brittleness. Thus, in the region where buckling behavior of pile must be taken into account, the high grade concrete is supposed to be applied, and the dynamic buckling behavior of pile needs to be further studied. 展开更多
关键词 pile foundation stable loading path perturbation approach bury-depth ratio stiffness ratio of pile to soil
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部