期刊文献+
共找到42,111篇文章
< 1 2 250 >
每页显示 20 50 100
Temporal and spatial variation and prediction of water yield and water conservation in the Bosten Lake Basin based on the PLUS-InVEST model
1
作者 CHEN Jiazhen KASIMU Alimujiang +3 位作者 REHEMAN Rukeya WEI Bohao HAN Fuqiang ZHANG Yan 《Journal of Arid Land》 SCIE CSCD 2024年第6期852-874,共23页
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research ... To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management. 展开更多
关键词 PLUS model InVEST model Bosten Lake Basin water yield water conservation land-use simulation Geodetector
下载PDF
Influence of varied drought types on soil conservation service within the framework of climate change:insights from the Jinghe River Basin,China
2
作者 BAI Jizhou LI Jing +4 位作者 RAN Hui ZHOU Zixiang DANG Hui ZHANG Cheng YU Yuyang 《Journal of Arid Land》 SCIE CSCD 2024年第2期220-245,共26页
Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio... Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin. 展开更多
关键词 meteorological drought hydrological drought agricultural drought soil conservation service Variable Infiltration Capacity(VIC)model Revised Universal soil Loss Equation(RUSLE) Jinghe River Basin
下载PDF
Influence of ecological function protection zone on the water conservation in Gansu-Qinghai Contiguous Region of the upper Yellow River
3
作者 TONG Huali CHEN Qingbo ZHANG Xuan 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1345-1357,共13页
The implementation of Ecological Function Protection Zone(EFPZ)policy is significant for the ecological restoration and conservation of soil and water in the territory space.This manuscript analyzed and quantified the... The implementation of Ecological Function Protection Zone(EFPZ)policy is significant for the ecological restoration and conservation of soil and water in the territory space.This manuscript analyzed and quantified the impact of EFPZ on the regional water conservation function,based on land use data from 2005,2008,2010,2015 and 2020,by conducting a counterfactual simulation along with the GeoSOS-FLUS model and the InVEST model.The results demonstrate that the delineation of EFPZ can significantly influence the water conservation.(1)From 2010 to 2020,as the EFPZ was implemented,the water conservation in the study area was increasing year by year,with a growth rate of 0.03×10^(8) m^(3)∙a^(-1).On the other hand,the simulated water conservation capacity without the implementation of EFPZ decreased year by year,with a decrease rate of 0.01×10^(8) m^(3)∙a^(-1).(2)The EFPZ accounts for only 23%of the total area,but the contribution rate of water conservation reaches 80%.The actual values of water conservation and average water yield per unit pixel in the EFPZ show an increasing trend both internally and externally,while the counterfactual simulation values exhibit a decreasing trend.(3)The water conservation is much higher within the EFPZ than without EFPZ.The implementation of EFPZ has a significant effect on the improvement of the water conservation capacity in Maqu EFPZ and Yellow River Source EFPZ.The protection effectiveness should be enhanced in Qilian Mountain EFPZ and afforestation activities need to be carefully considered in Loess Plateau EFPZ. 展开更多
关键词 water conservation function Ecological Function Protection Zone Counterfactual simulation Geo SOS-FLUS model InVEST model
下载PDF
Research on Soil Conservation and Improvement Technology in Zhaoyang District
4
作者 Jing YANG Shifu ZHONG +8 位作者 Liting FANG Wei YAN Shixian PU Dianli MA Wenkai XIA Haohan GONG Mengsheng ZHANG Yeming FU Xia NI 《Agricultural Biotechnology》 2024年第1期20-23,共4页
The environment of tobacco-growing soil directly affects the yield and quality of tobacco leaves.In order to solve problems of tobacco-growing soil degradation,low organic matter content and unbalanced soil nutrient s... The environment of tobacco-growing soil directly affects the yield and quality of tobacco leaves.In order to solve problems of tobacco-growing soil degradation,low organic matter content and unbalanced soil nutrient supply and promote sustainable and healthy development of tobacco production,this paper comprehensively discussed conservation and improvement techniques of tobacco-growing soil based on existing problems in Zhaoyang District,aiming to provide reference for tobacco-growing soil conservation. 展开更多
关键词 Tobacco-growing soil conservation Flue-cured tobacco FERTILIZATION IMPROVEMENT
下载PDF
Fertilization and Soil Ploughing Practices under Changing Physical Environment Lead to Soil Organic Carbon Dynamics under Conservation Agriculture in Rice-Wheat Cropping System: A Scoping Review
5
作者 Salwinder Singh Dhaliwal Arvind Kumar Shukla +8 位作者 Sanjib Kumar Behera Sarwan Kumar Dubey Agniva Mandal Mehakpreet Kaur Randhawa Sharanjit Kaur Brar Gagandeep Kaur Amardeep Singh Toor Sohan Singh Walia Priyadarshani Arun Khambalkar 《Agricultural Sciences》 2024年第1期82-113,共32页
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ... Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system. 展开更多
关键词 TILLAGE conservation Agriculture soil Organic Carbon Carbon Fractions Rice-Wheat System Organic Amendments
下载PDF
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
6
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 soil and water conservation Regionalization Driving factors soil erosion Geographical detector model Spatial heterogeneity
下载PDF
Results and Application of Soil and Water Conservation Monitoring in the Yellow River Basin
7
作者 Yaxi Cai Xiaodong Yang Binhua Zhao 《Journal of Architectural Research and Development》 2023年第3期40-45,共6页
Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitori... Since water and soil conservation monitoring in the Yellow River Basin entered a new stage at the end of the 20th century,the monitoring scope has been expanding,the monitoring accuracy has been improving,the monitoring content and indicators have been increasing,and the monitoring technology and methods have been improving.This paper mainly analyzes the status of soil and water conservation monitoring in the Yellow River Basin,as well as the construction of the monitoring system and related research,in order to provide a reference for watershed management and development and the scientific research of water and soil conservation. 展开更多
关键词 soil and water conservation Monitoring results APPLICATION
下载PDF
A study of the soil water potential threshold values to trigger irrigation of ‘Shimizu Hakuto’ peach at pivotal fruit developmental stages
8
作者 Yusui Lou Yuepeng Han +4 位作者 Yubin Miao Hongquan Shang Zhongwei Lv Lei Wang Shiping Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期376-386,共11页
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man... Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit. 展开更多
关键词 PEACH soil water potential Irrigation threshold Fruit expansion PHOTOSYNTHESIS
下载PDF
Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil
9
作者 MA Yan WANG Youqi +2 位作者 MA Chengfeng YUAN Cheng BAI Yiru 《Journal of Arid Land》 SCIE CSCD 2024年第7期895-909,共15页
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different... The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas. 展开更多
关键词 stony soil gravel content water absorption characteristics hydraulic parameters one-dimensional horizontal soil column absorption experiment van Genuchten model eastern foothills of Helan Mountains
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
10
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline water soil Acidity soil Alkalinity
下载PDF
Spatio-temporal variation of water conservation and its impact factors on the southern slope of Qilian Mountains 被引量:2
11
作者 WEI Xingtao Oliver Valentine EBOY +1 位作者 CAO Guangchao XU Lu 《Regional Sustainability》 2023年第1期54-67,共14页
The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p... The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively. 展开更多
关键词 water conservation InVEST model The southern slope of Qilian Mountains water balance principle EVAPOTRANSPIRATION Analytic Hierarchy Process(AHP)
下载PDF
Spatio-temporal Changes in Water Conservation Ecosystem Service During 1990–2019 in the Tumen River Basin, Northeast China 被引量:2
12
作者 ZHANG Peng LIU Xiaoping +5 位作者 ZHU Weihong LI Chunjing JIN Ri YAN Hengqi GU Chengyang WANG Jingzhi 《Chinese Geographical Science》 SCIE CSCD 2023年第1期102-115,共14页
The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecol... The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecological and water resource management.The Tumen River Basin(TRB) is located in the core of the Northeast Asian ecological network and has been experiencing severe ecological crises and water shortages in recent years due to climate change and human activities. However, these crises have not been fully revealed to the extent that corresponding scientific measures are lacking. This study analyzed the spatial and temporal evolution characteristics and drivers of WC in the TRB from 1990 to 2019 based on the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model. The results showed that: 1) under the combined effect of nature and socioeconomics, the WC depth of the TRB has slowly increased at a rate of 0.11 mm/yr in the past 30 years, with an average WC depth of 36.14 mm. 2) The main driving factor of the spatial variation in WC is precipitation, there is a significant interaction between precipitation and velocity, the interaction between each factor is higher than the contribution of a single factor, and the interactions between factors all have nonlinear enhancement and two-factor enhancement. 3) Among the seven counties and municipalities in the study area, the southern part of Helong City and the southeastern part of Longjing City are extremely important areas for WC(> 75 mm), and they should be regarded as regional water resources and ecological priority protection areas. It is foreseen that under extreme climate conditions in the future, the WC of the watershed is under great potential threat, and protection measures such as afforestation and forestation should begin immediately. Furthermore, the great interannual fluctuations in WC depth may place more stringent requirements on the choice of time scales in the ecosystem service assessment process. 展开更多
关键词 water conservation Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model Geodetector driving factors Tumen River Basin
下载PDF
Evaluation of the water conservation function in the Ili River Delta of Central Asia based on the InVEST model 被引量:1
13
作者 CAO Yijie MA Yonggang +2 位作者 BAO Anming CHANG Cun LIU Tie 《Journal of Arid Land》 SCIE CSCD 2023年第12期1455-1473,共19页
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w... The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD. 展开更多
关键词 water conservation function water yield Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model climate change land use/land cover change(LUCC) Ili River Delta Lake Balkhash
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
14
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field water Regimes Hysteretic Behaviors soil Moisture Conditions soil water Characteristic Curves Specific water Capacity Wetting-Drying Cycles
下载PDF
Long-term improvements in water conservation functions at Qilian Mountain National Park, northwest China
15
作者 GAO Xiang HUANG Xing-xing +5 位作者 CHANG Shu-hang DANG Qian-wen WEN Rui-yang LO Kevin LI Jie YAN An 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2885-2897,共13页
Water conservation is one of the most important ecosystem functions.This study uses the InVEST model to examine the water conservation function of the Qilian Mountain National Park(QMNP),an important water supply area... Water conservation is one of the most important ecosystem functions.This study uses the InVEST model to examine the water conservation function of the Qilian Mountain National Park(QMNP),an important water supply area in northwest China.We analyzed the spatiotemporal water conservation patterns of QMNP from 1988 to 2019.It showed that the water conservation capacity in QMNP has increased over the past 32 years,reaching a peak of 6.495×108 m3 in 2019.The area with an increased water conservation capacity is 12 times larger than the area with a reduced capacity.We also examined how climatic,land-use,vegetation coverage,and topographical factors influence water conservation functions.We found that precipitation is the main climatic factor in water conservation.The water conservation function also varies with land-cover type,with forests having the highest capacity,followed by grasslands.Lastly,topographical factors,including altitude and slope,also shape the spatial patterns of water conservation functions in QMNP. 展开更多
关键词 water conservation function Ecosystem services InVEST model Qilian Mountain National Park Northwest China
下载PDF
Benefits of Conservation Agriculture on Soil and Water Conservation and Its Progress in China 被引量:15
16
作者 LI Ling-ling HUANG Gao-bao +3 位作者 ZHANG Ren-zhi Bill Bellotti Guangdi Li Kwong Yin Chan 《Agricultural Sciences in China》 CAS CSCD 2011年第6期850-859,共10页
Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture ... Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in one word, it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world's arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. This paper described terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture. 展开更多
关键词 China conservation tillage crop residue mulch NO-TILL soil and water conservation SUSTAINABILITY
下载PDF
Water and Soil Conservation in Taiwan Based on Theoretical Research of Water and Soil Ecology 被引量:8
17
作者 SUN Fazheng 《Journal of Landscape Research》 2016年第5期90-92,96,共4页
Taiwan has always attached great importance to management of mountain slopes, and its steepslope water and soil conservation system has been a reference for the water and soil conservation in hot and rainy regions. Fr... Taiwan has always attached great importance to management of mountain slopes, and its steepslope water and soil conservation system has been a reference for the water and soil conservation in hot and rainy regions. From the perspective of water and soil ecology theory, new forms of water and soil loss emerged since the industrialization and urbanization of Taiwan, also known as hidden water and soil loss, such as soil hardening, change of original landform, destruction of ecological landscape etc.. These losses should be controlled through water and soil conservation measures such as initial involvement, dynamic analysis, systematic treatment and disaster avoidance, all production and construction activities should follow three elements(water, soil and vegetation) and their correlation laws, in order to maintain water and soil ecological balance. By integrating water and soil ecological concepts, water and soil conservation in Taiwan will make more progress. 展开更多
关键词 TAIWAN water and soil conservation water and soil ecological theory
下载PDF
Soil water characteristics in mountain poplar stand and its benefits to soil and water conservation in loess hilly region 被引量:1
18
作者 Wu Qinxiao Liu Xiangdong Zhao Hongyan Northwestern Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Conservancy),Yangling 712100,China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1994年第3期347-354,共8页
The soil physical properties,its water characteristics and the benefits to soil and water conservation in mountain poplar stand were determined and studied. The results of the study show that the compaction in soil pr... The soil physical properties,its water characteristics and the benefits to soil and water conservation in mountain poplar stand were determined and studied. The results of the study show that the compaction in soil profile is relatively homogeneous.the specific gravity and volume weight of soil increase with deepening of soil horizon. The water infiltration rate of soil in the stand is 17,6 times as high as in rangeland.Owing to the intense absorption of water by root system of plants,a drying layer is formed in soil horizon from 2.3 m to 2.7m,showing that the subsoil moisture is in the state of deficit. The annual water storage capacity in 2 m of soil horizon is 360 mm 370mm,or 63% 65% of annual precipitation. Compared with farmland,mountain poplar stand reduces the surface runoff and soil loss by 70% and 99%,respectively,indicating the great benefits to soil and water conservation. 展开更多
关键词 mountain poplar soil water characteristics soil and water conservation.
下载PDF
Study on Water and Soil Conservation Effects of Grassland Based on Live Vegetation Volume at Various Time Scales 被引量:1
19
作者 Wu Xiaoxia Gu Zhujun 《Meteorological and Environmental Research》 CAS 2016年第4期31-36,共6页
Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and int... Based on the observation data of rainfall,vegetation,runoff and sediment yield in the experimental plots located in Hetian Town,Changting County of Fujian Province during 2007-2010,the changing characteristics and interrelation of live vegetation volume of grass,rainfall parameters,and water(soil)conservation effect RE(SE)were analyzed at four time scales of rainfall event,month,season,and year.The results showed that with the increase of time scales,the rainfall and vegetation indicators increased or decreased more or less,and the variation range of RE was small,while SEslowly decreased.The mean REchanged by 10%-20% at different time scales,and the observed water conservation effect of the grassland was the best at season scale while the worst at year scale.The soil conservation effect of the grassland was the best at month scale and the worst at season scale.The water conservation effect of the grass was mainly controlled by rainfall factors,including rainfall duration and precipitation at rainfall event scale,and the maximum intensity of precipitation within 30 min at longer time scales.However,the soil conservation effect of the grass was mainly controlled by vegetation factors,including the contribution of the litter on soil surface at rainfall event scale,the interaction of rainfall and vegetation at month and season scales,and the live vegetation volume of the grass at year scale.Consequently,at different time scales,the factors influencing water and soil conservation changed and interacted,and the observed water and soil conservation effects were also different,indicating that the influence of time scales deserves attention in both research and management practices. 展开更多
关键词 LIVE VEGETATION VOLUME Time scale water conservation EFFECT soil conservation EFFECT China
下载PDF
Regions and Their Typical Paradigms for Soil and Water Conservation in China 被引量:1
20
作者 DANG Xiaohu SUI Boyang +5 位作者 GAO Siwen LIU Guobin WANG Tao WANG Bing NING Duihu BI Wei 《Chinese Geographical Science》 SCIE CSCD 2020年第4期643-664,共22页
China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and wate... China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and water conservation(SWC),for which eight regions and 41 subregions have been developed to improve the environment and increase land productivity.To obtain information from the regional planning and strategies for SWC and to explore whether SWC practices simultaneously contribute to soil conservation,ecosystem functioning,and the livelihoods of local farmers,and to summarize the successful experiences of various SWC paradigms with distinct characteristics and mechanisms of soil erosion,this paper systematically presents seven SWC regions(excluding the Tibetan Plateau region)and 14 typical SWC paradigms,focusing on erosion mechanisms and the key challenges or issues in the seven regions as well as on the core problems,main objectives,key technologies,and the performance of the 14 typical paradigms.In summary,the 14 typical SWC paradigms successfully prevent and control local soil erosion,and have largely enhanced,or at least do not harm,the livelihoods of local farmers.However,there remain many challenges and issues on SWC and socioeconomic development that need to be addressed in the seven SWC regions.China,thus,still has a long way to go in successfully gaining the win-win objective of SWC and human aspects of development. 展开更多
关键词 regions for soil and water conservation soil erosion dryland farming collapse erosion karst rocky desertification typical paradigm for soil and water conservation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部