期刊文献+
共找到6,728篇文章
< 1 2 250 >
每页显示 20 50 100
Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China
1
作者 DU Lan TIAN Shengchuan +5 位作者 ZHAO Nan ZHANG Bin MU Xiaohan TANG Lisong ZHENG Xinjun LI Yan 《Journal of Arid Land》 SCIE CSCD 2024年第7期925-942,共18页
Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub... Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species. 展开更多
关键词 soil salinization HALOPHYTES SHRUBLAND climate change BIODIVERSITY DRYLANDS Northwest China
下载PDF
Experimental investigation into the salinity effect on the physicomechanical properties of carbonate saline soil
2
作者 Jiejie Shen Qing Wang +3 位作者 Yating Chen Xuefei Zhang Yan Han Yaowu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1883-1895,共13页
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu... For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects. 展开更多
关键词 Carbonate saline soil Salt content Physicomechanical properties Bound water MICROSTRUCTURE
下载PDF
Thermal-water-salt coupling process of unsaturated saline soil under unidirectional freezing 被引量:3
3
作者 LUO Chong-liang YU Yun-yan +3 位作者 ZHANG Jing TAO Jing-yan OU Qing-jie CUI Wen-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第2期557-569,共13页
Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation... Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation,the thermal-water-salt coupling mathematical model of unsaturated frozen saline soil was established.The model considered the latent heat of phase change,crystallization impedance,crystallization consumption and complete precipitation of solute crystallization in ice.In order to verify the rationality of the model,the unidirectional freezing test of unsaturated saline soil was carried out in an open system with no-pressure water supplement to obtain the spatial distribution of temperature,moisture and salt in the saline soil.Finally,numerical simulations are implemented with the assistance of COMSOL Multiphysics.Validation of the model is illustrated by comparisons between the simulation and experimental data.The results demonstrated that the temperature within saline soil changes with time and can be divided into three stages,namely quick freezing stage,transitional stage and stable stage.The water and salt contents in the freezing zone are layered,with peak values at the freezing front.The coupled model could reveal the heat-mass migration mechanism of unsaturated frozen saline soil and dynamically describe the freezing depth and the movement law of the freezing front,ice and salt crystal formation mechanism,and the change law of thermal conductivity and permeability coefficient. 展开更多
关键词 Unsaturated sulfate saline soil Watersalt migration Crystallization latent heat Crystallization impedance Mathematical model
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
4
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING saline Water soil Acidity soil Alkalinity
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil
5
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen C:N ratio saline soil
下载PDF
Approach of water-salt regulation using micro-sprinkler irrigation in two coastal saline soils
6
作者 Lin-lin Chu Yu Zhu +4 位作者 Ling Xiong Rong-yu Huang Yao-hu Kang: Zhan-peng Liu Xiao-ming Geng 《Water Science and Engineering》 EI CAS CSCD 2023年第1期106-112,共7页
This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkl... This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth.Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region.The application of the three stages of soil wateresalt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils.There were increases in the plant height,leaf width,leaf length,and tiller numbers of tall fescue throughout the leaching process.The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil.This approach achieved better effects in sandy loam soil than in silt soil.Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process,whereas plant growth was higher in silt soil because of effective water conservation.In sandy loam,soil moisture should be maintained during soil reclamation,and in silt soil,soil root-zone environments optimal for the emergence of plants should be quickly established.Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil wateresalt regulation regime. 展开更多
关键词 Coastal saline soils Micro-sprinkler irrigation Salt leaching Tall fescue Wateresalt regulation
下载PDF
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
7
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
Satellite-Based Monitoring of Decadal Soil Salinization and Climate Effects in a Semi-arid Region of China 被引量:10
8
作者 王鹤松 贾根锁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第5期1089-1099,共11页
Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-s... Soil salinization is a common phenomenon that affects both the environment and the socio-economy in arid and semi-arid regions; it is also an important aspect of land cover change. In this study, we integrated multi-sensor remote sensing data with a field survey to analyze processes of soil salinization in a semi-arid area in China from 1979 to 2009. Generally, the area of salt-affected soils increased by 0.28% per year with remarkable acceleration from 1999 to 2009 (0.42% increase per year). In contrast, the area of surface water bodies showed a decreasing trend (-0.08% per year) in the same period. Decreases in precipitation and increases in aridity due to annual (especially summer) warming provided a favorable condition for soil salinization. The relatively flat terrain favored waterlogging at the surface, and continuous drought facilitated upward movement of soil water and accumulation of surface saline and calcium. Meanwhile, land-use practices also played a crucial role in accelerating soil salinization. The conversion to cropland from natural vegetation greatly increased the demand for groundwater irrigation and aggravated the process of soil salinization. Furthermore, there are potential feedbacks of soil salinization to regional climate. The salinization of soils can limit the efficiency of plant water use as well as photosynthesis; therefore, it reduces the amount of carbon sequestrated by terrestrial ecosystem. Soil salinization also reduces the absorbed solar radiation by increasing land surface albedo. Such conversions of land cover significantly change the energy and water balance between land and atmosphere. 展开更多
关键词 soil salinization land cover change remote sensing semi-arid China land atmosphere inter- actions
下载PDF
Space-Time Variability and Prognosis of Soil Salinization in Yucheng City, China 被引量:10
9
作者 YANG Yu-Jian YANG Jing-Song LIU Guang-Ming YANG Xiao-Ying 《Pedosphere》 SCIE CAS CSCD 2005年第6期797-804,共8页
This research used both geostatistics and GIS approach to compare temporal change of soil salt between 1980 and 2003, to analyze the spatial distribution of surface soil salt, to developed methods for predicting soil ... This research used both geostatistics and GIS approach to compare temporal change of soil salt between 1980 and 2003, to analyze the spatial distribution of surface soil salt, to developed methods for predicting soil salinization potential based on recent improvements to the Dempster-Shafer theory, and to develop probability maps of potential salinization in Yucheng City, China. A semivariogram model of soil salt content was developed from the spherical model, and then employing kriging interpolation the spatial distribution of salt content in 2003 was obtained utilizing data from 100 soil sampling points. Potential salinization distribution was mapped using an approach that integrated soil data of the second general survey in 1980 in Yucheng City, which included groundwater salinity, groundwater depth, soil texture, soil organic matter content, and geomorphic maps. With the support of Dempster-Shafer theory and fuzzy set technique the factors that affected potential soil salinization were characterized and integrated; and then soil salinization was predicted. Finally a prognosis map of potential salinization distribution in the research area was obtained, with higher probability values indicating higher hazards to salinity processes. The distribution of the potential soil salinization probability was a successive surface. 展开更多
关键词 土壤 盐化作用 GIS 地理信息系统 山东
下载PDF
Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms 被引量:5
10
作者 Guolin Ma Jianli Ding +2 位作者 Lijng Han Zipeng Zhang Si Ran 《Regional Sustainability》 2021年第2期177-188,共12页
Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land managem... Soil salinization is one of the most important causes of land degradation and desertification,especially in arid and semi-arid areas.The dynamic monitoring of soil salinization is of great significance to land management,agricultural activities,water quality,and sustainable development.The remote sensing images taken by the synthetic aperture radar(SAR)Sentinel-1 and the multispectral satellite Sentinel-2 with high resolution and short revisit period have the potential to monitor the spatial distribution of soil attribute information on a large area;however,there are limited studies on the combination of Sentinel-1 and Sentinel-2 for digital mapping of soil salinization.Therefore,in this study,we used topography indices derived from digital elevation model(DEM),SAR indices generated by Sentinel-1,and vegetation indices generated by Sentinel-2 to map soil salinization in the Ogan-Kuqa River Oasis located in the central and northern Tarim Basin in Xinjiang of China,and evaluated the potential of multi-source sensors to predict soil salinity.Using the soil electrical conductivity(EC)values of 70 ground sampling sites as the target variable and the optimal environmental factors as the predictive variable,we constructed three soil salinity inversion models based on classification and regression tree(CART),random forest(RF),and extreme gradient boosting(XGBoost).Then,we evaluated the prediction ability of different models through the five-fold cross validation.The prediction accuracy of XGBoost model is better than those of CART and RF,and soil salinity predicted by the three models has similar spatial distribution characteristics.Compared with the combination of topography indices and vegetation indices,the addition of SAR indices effectively improves the prediction accuracy of the model.In general,the method of soil salinity prediction based on multi-source sensor combination is better than that based on a single sensor.In addition,SAR indices,vegetation indices,and topography indices are all effective variables for soil salinity prediction.Weighted Difference Vegetation Index(WDVI)is designated as the most important variable in these variables,followed by DEM.The results showed that the high-resolution radar Sentinel-1 and multispectral Sentinel-2 have the potential to develop soil salinity prediction model. 展开更多
关键词 salinization Digital soil mapping XGBoost Sentinel-1 Sentinel-2 Ogan-Kuqa River Oasis
下载PDF
WELL-CANAL MIXED IRRIGATION REGULATION MODEL FOR AMELIORATING SOIL SALINIZATION
11
作者 Xu Zhihong Ningxia Research Institute of Environmental Protection, Yinchuan 750000, P. R. China 《干旱区资源与环境》 CSCD 1993年第Z1期254-255,共2页
It is an important way for salinized soil amelioration to practise comprehensive irriga-tion-drainage scheme with canal,well and drain togather and to utilize surface and groundwaters jointly. In more serious salinize... It is an important way for salinized soil amelioration to practise comprehensive irriga-tion-drainage scheme with canal,well and drain togather and to utilize surface and groundwaters jointly. In more serious salinized region, well-canal mixed irrigation can improvethe irrigated water quality. To fulfil water quality requirements, it is necessary to 展开更多
关键词 soil Well-canal MIXED IRRIGATION The AMELIORATION of salinized soil Reglation Equation
下载PDF
基于Sentinel-1/2改进极化指数和纹理特征的土壤含盐量反演模型
12
作者 张智韬 贺玉洁 +3 位作者 殷皓原 项茹 陈俊英 杜瑞麒 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期175-185,共11页
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentine... 目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentinel-1/2协同反演植被土壤含盐量的精度,用水云模型对雷达卫星后向散射系数进行校正,消除植被影响;然后协同Sentinel-2纹理特征,基于VIP、OOB、PCA 3种变量筛选和RF、ELM、Cubist 3种机器学习回归模型构建植被土壤含盐量反演模型。研究结果表明:经过水云模型去除植被影响后的雷达后向散射系数及其极化组合指数与土壤含盐量的相关性有一定程度的提高。不同变量选择方法与不同机器学习方法耦合模型在反演土壤含盐量中,OOB变量筛选方法与RF、ELM和Cubist 3种机器学习方法的耦合模型精度最佳,建模集和验证集的R2都在0.750以上,且验证集的RMSE和MAE均最小;其中OOB-Cubist耦合模型精度最高,且R_(v)^(2)/R_(c)^(2)为0.955,具有良好的鲁棒性。研究可为机器学习协同物理模型、光学卫星协同雷达卫星在土壤含盐量反演中的进一步应用提供思路。 展开更多
关键词 土壤含盐量 Sentinel-1/2 纹理特征 水云模型 机器学习 改进极化指数
下载PDF
Effects of saline irrigation on soil salt accumulation and grain yield in the winter wheat-summer maize double cropping system in the low plain of North China 被引量:14
13
作者 LIU Xiu-wei Til Feike +3 位作者 CHEN Su-ying SHAO Li-wei SUN Hong-yong ZHANG Xi-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2886-2898,共13页
In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to ... In the dominant winter wheat (WW)-summer maize (SM) double cropping system in the low plain located in the North China, limited access to fresh water, especially during dry season, constitutes a major obstacle to realize high crop productivity. Using the vast water resources of the saline upper aquifer for irrigation during WW jointing stage, may help to bridge the peak of dry season and relieve the tight water situation in the region. A field experiment was conducted during 2009-2012 to investigate the effects of saline irrigation during WW jointing stage on soil salt accumulation and productivity of WW and SM. The experiment treatments comprised no irrigation (T1), fresh water irrigation (T2), slightly saline water irrigation (T3:2.8 dS m-l), and strongly saline water irrigation (T4:8.2 dS m-1) at WW jointing stage. With regard to WW yields and aggregated annual WW-SM yields, clear benefits of saline water irrigation (T3 & T4) compared to no irrigation (T1), as well as insignificant yield losses compared to fresh water irrigation (T2) occurred in all three experiment years. However, the increased soil salinity in eady SM season in consequence of saline irrigation exerted a negative effect on SM photosynthesis and final yield in two of three experiment years. To avoid the negative aftereffects of saline irrigation, sufficient fresh water irrigation during SM sowing phase (i.e., increase from 60 to 90 mm) is recommended to guarantee good growth conditions during the sensitive early growing period of SM. The risk of long-term accumulation of salts as a result of saline irrigation during the peak of dry season is considered low, due to deep leaching of salts during regularly occurring wet years, as demonstrated in the 2012 experiment year. Thus, applying saline water irrigation at jointing stage of WW and fresh water at sowing of SM is most promising to realize high yield and fresh irrigation water saving. 展开更多
关键词 winter wheat summer maize soil salinity saline water irrigation salt balance
下载PDF
Present situation and tendency of saline-alkali soil in west Jilin Province 被引量:9
14
作者 LIU Hui-qing, XU Jia-wei, WU Xiu-qin (Institute of Urban and Environment Science, Northeast Normal University, Changchun 130024, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期321-328,共8页
Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1... Taking west Jilin Province as an example, this paper put forward the assessment index of salinization, and based on it, the authors present the distribution characteristics of saline-alkali soil in the 1980s and the 1990s in west Jilin and analyze its physical and chemical properties in detail. The developing tendency of salinization was also inferred by comparing the saline-alkali soil of the 1980s with that of the 1990s. Finally, the natural and human factors leading to salinization are analyzed. 展开更多
关键词 saline-alkali soil west Jilin salinization degraded soil
下载PDF
Spatio-Temporal Changes of Soil Salinity in Arid Areas of South Xinjiang Using Electromagnetic Induction 被引量:10
15
作者 LI Xiao-ming YANG Jing-song +2 位作者 LIU Mei-xian LIU Guang-ming YU Mei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第8期1365-1376,共12页
The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily.... The aim of this paper was to research the spatio-temporal changes in total soluble salt content (TS) in a typical arid region of South Xinjiang, China, where the climate is arid and soil salinization happens easily. The total soluble salt content was interpreted by measurements made in the horizontal mode with EM38 and EM31. The electromagnetic induction (EM) surveys were made three times with the apparent soil electrical conductivity (ECa) measurements taken at 3 873 locations in Nov. 2008, 4 807 locations in Apr. 2009 and 6 324 locations in Nov. 2009, respectively. For interpreting the ECa measurements into total soluble salt content, calibtion sites were needed for EM survey of each time, e.g., 66 sites were selected in Nov. 2008 to measure ECa, and soils-core samples were taken by different depth layers of 0-10, 10-20 and 20-40 cm at the same time. On every time duplicate samples were taken at five sites to allevaite the local-scale variability, and soil temperatures in different layers through the profiles were also measured. Factors including TS, pH, water content, bulk density were analyzed by lab experiments. ECa calibration equations were obtained by linear regression analysis, which indicated that soil salinity was one primary concern to ECa with a determination coefficient of 0.792 in 0-10 cm layer, 0.711 in 10-20 cm layer and 0.544 in 20-40 cm layer, respectively. The maps of spatial distribution were predicted by Kriging interpolation, which showed that the high soil salinity was located near the drainage canal, which validated the trend effect caused by the irrigation canal and the drainage canal. And by comparing the soil salinity in different layers, the soluble salt accumulated to the top soil surface only in the area where the soil salinization was serious, and in the other areas, the soil salinity trended to increase from the top soil surface to 40 cm depth. Temporal changes showed that the soil salinity in November was higher than that in April, and the soil salinization trended to aggravate, especially in the top soil layer of 0-10 cm. 展开更多
关键词 spatio-temporal changes soil salinity South Xinjiang electromagnetic induction (EM) KRIGING
下载PDF
Study on Soil Salinization Information in Arid Region Using Remote Sensing Technique 被引量:10
16
作者 Tashpolat Tiyip 《Agricultural Sciences in China》 SCIE CAS CSCD 2011年第3期404-411,共8页
Extracting information about saline soils from remote sensing data is useful, particularly given the environmental significance and changing nature of these areas in arid environments. One interesting case study to co... Extracting information about saline soils from remote sensing data is useful, particularly given the environmental significance and changing nature of these areas in arid environments. One interesting case study to consider is the delta oasis of the Weigan and Kuqa rivers, China, which was studied using a Landsat Enhanced Thematic Mapper Plus (ETM+) image collected in August 2001. In recent years, decision tree classifiers have been successfully used for land cover classification from remote sensing data. Principal component analysis (PCA) is a popular data reduction technique used to help build a decision tree; it reduces complexity and can help the classification precision of a decision tree to be improved. A decision tree approach was used to determine the key variables to be used for classification and ultimately extract salinized soil from other cover and soil types within the study area. According to the research, the third principal component (PC3) is an effective variable in the decision tree classification for salinized soil information extraction. The research demonstrated that the PC3 was the best band to identify areas of severely salinized soil; the blue spectral band from the ETM+ sensor (TM1) was the best band to identify salinized soil with the salt-tolerant vegetation of tamarisk (Tamarix chinensis Lour); and areas comprising mixed water bodies and vegetation can be identified using the spectral indices MNDWI (modified normalized difference water index) and NDVI (normalized difference vegetation index). Based upon this analysis, a decision tree classifier was applied to classify landcover types with different levels of soil saline. The results were checked using a statistical accuracy assessment. The overall accuracy of the classification was 94.80%, which suggested that the decision tree model is a simple and effective method with relatively high precision. 展开更多
关键词 soil salinization information arid region remote sensing
下载PDF
Soil Salinity Mapping and Monitoring in Arid and Semi-Arid Regions Using Remote Sensing Technology: A Review 被引量:15
17
作者 Amal Allbed Lalit Kumar 《Advances in Remote Sensing》 2013年第4期373-385,共13页
Soil salinity is a serious environmental problem especially in arid and semiarid areas. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leadi... Soil salinity is a serious environmental problem especially in arid and semiarid areas. It either occurs naturally or is human-induced. High levels of soil salinity negatively affect crop growth and productivity leading land degradation ultimately. Thus, it is important to monitor and map soil salinity at an early stage to enact effective soil reclamation program that helps lessen or prevent future increase in soil salinity. Remote sensing has outperformed the traditional method for assessing soil salinity offering more informative and professional rapid assessment techniques for monitoring and mapping soil salinity. Soil salinity can be identified from remote sensing data obtained by different sensors by way of direct indicators that refer to salt features that are visible at the soil surface as well as indirect indicators such as the presence of halophytic plant and assessing the performance level of salt-tolerant crops. The purposes of this paper are to 1) discuss some soil salinity indicators;2) review the satellite sensors and methods used for remote monitoring, detecting and mapping of soil salinity, particularly in arid and semi-arid regions;3) review various spectral vegetation and salinity indices that have been developed and proposed for soil salinity detection and mapping, with an emphasis on soil salinity mapping and assessment in arid and semi-arid regions;and 4) highlight the most important issues limiting the use of remote sensing for soil salinity mapping, particularly in arid and semi-arid regions. 展开更多
关键词 soil salinITY REMOTE SENSING Halophytic PLANT salinITY INDEX
下载PDF
Spatio-temporal variations of soil water content and salinity around individual Tamarix ramosissima in a semi-arid saline region of the upper Yellow River, Northwest China 被引量:5
18
作者 yang benman wang ruoshui +2 位作者 xiao huijie cao qiqi liu tao 《Journal of Arid Land》 SCIE CSCD 2018年第1期101-114,共14页
Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations ... Ecological restoration by Taman'x plants on semi-arid saline lands affects the accumulation, distribution patterns and related mechanisms of soil water content and salinity. In this study, spatio-temporal variations of soil water content and salinity around natural individual Tamarix ramosissiraa Ledeb. were invetigated in a semi-arid saline region of the upper Yellow River, Northwest China. Specifically, soil water content, electrical conductivity (EC), sodium adsorption ratio (SARa), and salt ions (including Na+, K+, Ca2+, Mg2+ and 8042-) were measured at different soil depths and at different distances from the trunk of T. ramasissima in May, July, and September 2016. The soil water content at the 20-80 cm depth was significantly lower in July and September than in May, indicating that T. ramosissima plants absorb a large amount of water through the roots during the growing period, leading to the decreasing of soil water content in the deep soil layer. At the 0-20 cm depth, there was a salt island effect around individual T. ramosissima, and the ECe differed significantly inside and outside the canopy of T. ramosissima in May and July. Salt bioaccumulation and stemflow were two major contributing factors to this difference. The SAR at the 0-20 cm depth was significantly different inside and outside the canopy of T. ramosissima in the three sampling months. The values of SAR~ at the 60-80 cm depth in May and July were significantly higher than those at the 0-60 cm depth and higher than that at the corresponding depth in September. The distribution of Na+ in the soil was similar to that of the SAI, while the concentrations of K+, Ca2+, and Mg2+ showed significant differences among the sampling months and soil depths. Both season and soil depth had highly significant effects on soil water content, ECe and SARa, whereas distance from the trunk of T. ramosissima only significantly affected ECe. Based on these results, we recommend co-planting of shallow-rooted salt-tolerant species near the Tamarx plants and avoiding planting herbaceous plants inside the canopy of T. ramodssima for afforestation in this semi-arid saline region. The results of this study may provide a reference for appropriate restoration in the semi-arid saline regions of the upper Yellow River. 展开更多
关键词 Tamarix ramosisdma soil water content electrical conductivity sodium adsorption ratio saline soil YellowRiver
下载PDF
Influence of the roots of mixed-planting species on the shear strength of saline loess soil 被引量:10
19
作者 LIU Ya-bin HU Xia-song +2 位作者 YU Dong-mei ZHU Hai-li LI Guo-rong 《Journal of Mountain Science》 SCIE CSCD 2021年第3期806-818,共13页
In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L... In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L.,Elymus nutans Griseb.,Puccinellia distanx(L.),and Poa pratensis L.)and one shrub species(Caragana korshinskii Kom.)were investigated on the shear strength characteristics of saline loess soil.The root distribution characteristics were assessed via a survey when the plants grew for one year.The effects of the root biomass density,the root mass ratio(RMR)of the fine roots to the coarse roots,the moisture content,and the salt content on the shear strength index of the rooted soil were analyzed via a triaxial compression test,and the mechanism of these effects was discussed.The results indicate that the biomass density decreased linearly with increasing depth.The RMR initially decreased with depth and then increased,exhibiting in a quadratic relationship.The cohesion of the rooted soil increased linearly as the biomass density increased.The cohesion of the rooted soil initially increased with increasing RMR and salt content,and then it decreased.The turning point of the cohesion occurred when the RMR was 0.6 and the salt content was 1.18%.The internal friction angle of the rooted soil initially increased with biomass density and then decreased,and the turning point of the internal friction angle occurred when the biomass density was 0.015 g/cm3.The relationships between the internal friction angle of the rooted soil and the RMR and salt content were exponential incremental and linear subtractive relationship,respectively.Both the cohesion and the internal friction angle of the rooted soil linearly decreased with increasing moisture content. 展开更多
关键词 Xining Basin Herb species Shrub species Rooted soil saline loess soil soil reinforcement Shear strength index
下载PDF
The Effects of Biochar on Germination and Growth of Wheat in Different Saline-alkali Soil 被引量:9
20
作者 Guijun WANG Zhenwen XU 《Asian Agricultural Research》 2013年第11期116-119,共4页
Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the so... Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil's saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling. 展开更多
关键词 BIOCHAR salinE ALKALI soil WHEAT SEED GERMINATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部