Soil C /N ratio is an important influencing factor in soil nitrogen cycling. Two-year old apple trees( Borkh. cv. ‘Fuji'/Malus hupehensis) were used to understand the effect of soil C/N ratio [6. 52( CK),10,15,20...Soil C /N ratio is an important influencing factor in soil nitrogen cycling. Two-year old apple trees( Borkh. cv. ‘Fuji'/Malus hupehensis) were used to understand the effect of soil C/N ratio [6. 52( CK),10,15,20,25,30,35 and 40]on apple growth and nitrogen utilization and loss by using15N trace technique. The results showed that,with the increasing of soil C/N ratio,apple shoot length and fresh weight increased at first,and then decreased; the higher apple shoot length and fresh weight appeared in C/N = 15,20 and 25 treatments,and there were no significant differences among these three treatments,but significantly higher than the other treatments. Statistical analysis revealed that there was significant difference in nitrogen utilization rate between the different treatments,the highest N utilization rate was occurred in soil C/N = 25 treatment which value was 22. 87%,and there was no significant difference between soil C/N = 25 and C/N = 20 treatments,but both the two treatments were significantly higher than the other treatments; Soil C/N = 40 had the lowest N utilization rate which value was 15. 43%,and this value was less than CK( 16. 65%). The proportion of plant absorption nitrogen from fertilizer was much higher when the value of soil C/N ratio in the range of 15- 25,but the percentage of plant absorption nitrogen from soil was much higher when the soil C/N ratio was too low( < 15) or high( < 25). Amount of residual nitrogen in soil increased gradually with the soil C/N ratio increasing,the amount of residual nitrogen in C/N = 40 treatment was 1. 32 times than that in CK. With the increasing of soil C/N ratio,fertilizer nitrogen loss decreased at first,and then increased,fertilizer nitrogen loss was the minimum in C/N = 25 treatments( 49. 87%) and the maximum were occurred in CK( 61. 54%). Therefore,regarding the apple growth and nitrogen balance situation,the value of soil C/N ratio in the range of 15- 25 would be favorable for apple growth and could increase effectively nitrogen fixed by soil,reduce nitrogen loss,and improve the nitrogen utilization ratio.展开更多
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their...Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.展开更多
Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation ref...Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.展开更多
Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing...Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.展开更多
Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found...Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found on the estimation ofthis storage after cultivated field converted into woodland or grassland, especially in small scales. This study is aimed toinvestigate the dynamics of SOC concentration, its storage and carbon /nitrogen (C/N) ratio in an aquic brown soil at theShenyang Experimental Station of Ecology, Chinese Academy of Sciences under four land use patterns over 14 years. Thefour land use patterns were paddy field (PF), maize field (MF), fallow field (FF) and woodland (WL). In each pedon at 0-150cm depth, soil samples were collected from ten layers. The results showed that the profile distribution of SOC was differentunder different land uses, indicating the effect of land use on SOC. Soil organic carbon was significantly related with soiltotal N, and the correlation was slightly closer in nature ecosystems (with R2=0.990 and P<0.001 in both WL and FF, n=30)than in agroecosystems (with R2=0.976 and P<0.001 in PF, and R2=0.980 and P<0.001 in MF, n=30). The C/N ratio in theprofiles decreased generally with depth under the four land use patterns, and was comparatively higher in WL and lowerin PF. The C/N ratio of the FF was closer to that in the same soil depths of MF than to that of PF. Within 100 cm depth, theannual sequestration of SOC was 4.25, 2.87, and 4.48 t ha-1 more in WL than in PF, MF and FF, the annual SOC increasingrate being 6.15, 3.26, and 5.09 % higher, respectively. As a result, the SOC storage was significantly greater in WL than inany of the other three land use patterns, P=0.001, 0.008, and 0.008 as compared with PF, MF, and FF, respectively, whilethere was no significant difference among the other three land uses. It is suggested that woodland has the potential tomake a significant contribution to C storage and environmental quality.展开更多
Soil productivity(SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield.However,there have been difficulties in estimating values of SPs for soils afte...Soil productivity(SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield.However,there have been difficulties in estimating values of SPs for soils after various long-term field treatments because the treatment without external fertilization is used but is depleted in soil nutrients,leading to erroneous estimation.The objectives of this study were to estimate the change of SP across different cropping seasons using pot experiments,and to evaluate the steady SP value(which is defined by the basal contribution of soil itself to crop yield) after various longterm fertilization treatments in soils at different geographical locations.The pot experiments were conducted in Jinxian of Jiangxi Province with paddy soil,Zhengzhou of Henan Province with fluvo-aquic soil,and Gongzhuling of Jilin Province with black soils,China.Soils were collected after long-term field fertilization treatments of no fertilizer(control;CK-F),chemical fertilizer(NPK-F),and combined chemical fertilizer with manure(NPKM-F).The soils received either no fertilizer(F0) or chemical fertilizer(F1) for 3-6 cropping seasons in pots,which include CK-P(control;no fertilizer from long-term field experiments for pot experiments),NPK-P(chemical fertilizer from long-term field experiments for pot experiments),and NPKM-P(combined chemical and organic fertilizers from long-term field experiments for pot experiments).The yield data were used to calculate SP values.The initial SP values were high,but decreased rapidly until a relatively steady SP was achieved at or after about three cropping seasons for paddy and fluvo-aquic soils.The steady SP values in the third cropping season from CK-P,NPK-P,and NPKM-P treatments were 37.7,44.1,and 50.0% in the paddy soil,34.2,38.1,and 50.0% in the fluvo-aquic soil,with the highest value observed in the NPKM-P treatment for all soils.However,further research is required in the black soils to incorporate more than three cropping seasons.The partial least squares path mode(PLS-PM) showed that total N(nitrogen) and C/N ratio(the ratio of soil organic carbon and total N) had positive effects on the steady SP for all three soils.These findings confirm the significance of the incorporation of manure for attaining high soil productivity.Regulation of the soil C/N ratio was the other main factor for steady SP through fertilization management.展开更多
Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass...Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study.展开更多
Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb...Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.展开更多
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N d...Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...展开更多
The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of ric...The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted.展开更多
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low...Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences.展开更多
Two 3-year (2008-2010, wheat-pea-barley) field experiments were conducted on certified organic farms near Spalding (Dark Brown Chernozem-Typic Haploboroll) and Star City (Gray Luvisol-Typic Haplocryalf) in northeaster...Two 3-year (2008-2010, wheat-pea-barley) field experiments were conducted on certified organic farms near Spalding (Dark Brown Chernozem-Typic Haploboroll) and Star City (Gray Luvisol-Typic Haplocryalf) in northeastern Sas-katchewan, Canada, to determine the residual effects of compost, alfalfa pellets, wood ash, rock phosphate, Penicillium bilaiae, gypsum and MykePro on organic C and N (total organic C [TOC], total organic N [TON], light fraction organic C [LFOC], light fraction organic N [LFON]) and mineralizable N (Nmin) in the 0 - 15 cm soil layer, and ammonium-N, nitrate-N, extractable P, exchangeable K and sulphate-S in the 0 - 15, 15 - 30 and 30 - 60 cm soil layers in autumn 2010. Compared to the unamended control, mass of TOC, TON, LFOC and LFON increased with compost and alfalfa pellets in both soils. However, the increases were much more pronounced for LFOC (by 125% - 133%) or LFON (by 102% - 103%) than TOC (by 19% - 29%) or TON (by 25% - 40%). The Nmin also increased in these two treatments compared to the control, but the increases were much smaller for compost than alfalfa pellets. In general, residual nitrate-N increased with increasing rate of compost and alfalfa pellets in the 0 - 15 and 15 - 30 cm layers in both soils. Extractable P increased with compost and exchangeable K with alfalfa pellets, but only in the 0 - 15 cm soil layer. Sulphate-S increased with compost, but mainly in the 30 - 60 cm soil layer. Soil pH usually increased with compost and more so with wood ash, but no effect of any amendment on ammonium-N. Overall, the quantity of organic C and N, and available nutrients in soil increased with compost and/or alfalfa pellets, but the magnitude varied with amendment and/or soil type. In conclusion, our findings suggest that soil quality and fertility can be improved with these organic amendments, suggesting sustainability of production from organic crops.展开更多
Traditionally, soil-testing laboratories have used a variety of methods to determine soil organic matter, yet they lack a practical method to predict potential N mineralization/immobilization from soil organic matter....Traditionally, soil-testing laboratories have used a variety of methods to determine soil organic matter, yet they lack a practical method to predict potential N mineralization/immobilization from soil organic matter. Soils with high micro-bial activity may experience N immobilization (or reduced net N mineralization), and this issue remains unresolved in how to predict these conditions of net mineralization or net immobilization. Prediction may become possible with the use of a more sensitive method to determine soil C:N ratios stemming from the water-extractable C and N pools that can be readily adapted by both commercial and university soil testing labs. Soil microbial activity is highly related to soil organic C and N, as well as to water-extractable organic C (WEOC) and water-extractable organic N (WEON). The relationship between soil respiration and WEOC and WEON is stronger than between respiration and soil organic C (SOC) and total organic N (TON). We explored the relationship between soil organic C:N and water-extractable organic C:N, as well as their relationship to soil microbial activity as measured by the flush of CO2 following rewetting of dried soil. In 50 different soils, the relationship between soil microbial activity and water-extractable organic C:N was much stronger than for soil organic C: N. We concluded that the water-extractable organic C:N was a more sensitive measurement of the soil substrate which drives soil microbial activity. We also suggest that a water-extractable organic C:N level > 20 be used as a practical threshold to separate those soils that may have immobilized N with high microbial activity.展开更多
Soil organic carbon (SOC) and soil inorganic carbon (SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen...Soil organic carbon (SOC) and soil inorganic carbon (SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen (N) fertilization rates are not clear in this area. A long-term field experiment started in June 2003 was conducted to investigate the SOC and SIC stocks in a calcareous soil of the Chinese Loess Plateau under four cultivation practices, i.e., fallow (FA), conventional cultivation (CC), straw mulch (SM), and plastic film-mulched ridge and straw-mulched furrow (RF), in combination with three N fertilization rates, i.e., 0 (NO), 120 (N120), and 240 (N240) kg N/hm2. Results indicate that the crop straw addition treatments (SM and RF) increased the contents of soil microbial biomass C (SMBC) and SOC, and the SOC stock increased by 10.1%-13.3% at the upper 20 cm soil depth in comparison to the 8-year fallow (FA) treatment. Meanwhile, SIC stock significantly increased by 19% at the entire tested soil depth range (0-100 cm) under all crop cultivation practices in comparison to that of soil exposed to the long-term fallow treatment, particularly at the upper 60 cm soil depth. Furthermore, moderate N fertilizer application (120 kg N/hm2) increased SOC stock at the upper 40 cm soil depth, whereas SIC stock decreased as the N fertilization rate increased. We conclude that the combined application of crop organic residues and moderate N fertilization rate could facilitate the sequestrations of SOC and SIC in the calcareous soil.展开更多
Land-use conversion and unsustainable farming practices are degrading native forest ecosystems of Ghana’s humid savannah agro-ecological zone. This study assessed the impact of land-use change on soil C and N stocks ...Land-use conversion and unsustainable farming practices are degrading native forest ecosystems of Ghana’s humid savannah agro-ecological zone. This study assessed the impact of land-use change on soil C and N stocks in different land-use systems and soil types. A total of eighty (80) composite soil samples at two depths (0 - 20 cm and 20 - 50 cm) were sampled from five land use types (Forest, Woodland savannah, Grassland, Fallow and Cropland) for laboratory analyses. Particle size distribution, bulk density, pH, SOC and TN were determined using standard procedures. Results of the study indicated that C and N stocks were significantly lower in croplands (p < 0.05) compared to other land-use systems. There were significant interactions (p < 0.05) within land-use systems, soil types, and soil depth for soil C and N stocks. Acrisol and associated soils had the highest C and N stocks. A strong positive significant correlation (p < 0.05) was observed between C and N stocks with an R<sup>2</sup> value of 0.85 and 0.93 for the 0 - 20 and 20 - 50 cm depth, respectively. Soil C and N stocks in the study area were estimated to be 34.56 kg/m<sup>2</sup> and 4.63 kg/m<sup>2</sup> for soil types and 26.89 kg/m<sup>2</sup> and 3.39 kg/m2 for land use types, respectively for the 0 to 50 cm soil depth. Our findings indicated that the conversion of native forest to arable land has significantly reduced soil C and N stocks in the top 50 cm (0.50 m) soil layer by 50.77% and 47.77%, respectively. Therefore, we conclude that land-use change, soil type, and soil depth influenced soil C and N stocks of land-use systems in the humid savannah agro-ecological zone of Ghana.展开更多
Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated a...Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated area is rain-fed and the crop productivity is low.Conservation agriculture reduces greenhouse gas emissions by enhancing soil carbon sequestration and then improved soil fertility,WUE and crop productivity.A field experiment展开更多
A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during t...A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly展开更多
Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilizatio...Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.展开更多
基金Special Fund for Agro-scientific Research in the Public Interest(201103003)the Earmarked Fund for China Agriculture ResearchSystem(CARS-28)
文摘Soil C /N ratio is an important influencing factor in soil nitrogen cycling. Two-year old apple trees( Borkh. cv. ‘Fuji'/Malus hupehensis) were used to understand the effect of soil C/N ratio [6. 52( CK),10,15,20,25,30,35 and 40]on apple growth and nitrogen utilization and loss by using15N trace technique. The results showed that,with the increasing of soil C/N ratio,apple shoot length and fresh weight increased at first,and then decreased; the higher apple shoot length and fresh weight appeared in C/N = 15,20 and 25 treatments,and there were no significant differences among these three treatments,but significantly higher than the other treatments. Statistical analysis revealed that there was significant difference in nitrogen utilization rate between the different treatments,the highest N utilization rate was occurred in soil C/N = 25 treatment which value was 22. 87%,and there was no significant difference between soil C/N = 25 and C/N = 20 treatments,but both the two treatments were significantly higher than the other treatments; Soil C/N = 40 had the lowest N utilization rate which value was 15. 43%,and this value was less than CK( 16. 65%). The proportion of plant absorption nitrogen from fertilizer was much higher when the value of soil C/N ratio in the range of 15- 25,but the percentage of plant absorption nitrogen from soil was much higher when the soil C/N ratio was too low( < 15) or high( < 25). Amount of residual nitrogen in soil increased gradually with the soil C/N ratio increasing,the amount of residual nitrogen in C/N = 40 treatment was 1. 32 times than that in CK. With the increasing of soil C/N ratio,fertilizer nitrogen loss decreased at first,and then increased,fertilizer nitrogen loss was the minimum in C/N = 25 treatments( 49. 87%) and the maximum were occurred in CK( 61. 54%). Therefore,regarding the apple growth and nitrogen balance situation,the value of soil C/N ratio in the range of 15- 25 would be favorable for apple growth and could increase effectively nitrogen fixed by soil,reduce nitrogen loss,and improve the nitrogen utilization ratio.
文摘Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.
基金Under the auspices of National Science and Technology Support Program of China(No.2014BAC15B03)the West Light Funds of Chinese Academy of Sciences(No.YB201302)
文摘Soil carbon to nitrogen(C/N) ratio is one of the most important variables reflecting soil quality and ecological function,and an indicator for assessing carbon and nitrogen nutrition balance of soils.Its variation reflects the carbon and nitrogen cycling of soils.In order to explore the spatial variability of soil C/N ratio and its controlling factors of the Ili River valley in Xinjiang Uygur Autonomous Region,Northwest China,the traditional statistical methods,including correlation analysis,geostatistic alanalys and multiple regression analysis were used.The statistical results showed that the soil C/N ratio varied from 7.00 to 23.11,with a mean value of 10.92,and the coefficient of variation was 31.3%.Correlation analysis showed that longitude,altitude,precipitation,soil water,organic carbon,and total nitrogen were positively correlated with the soil C/N ratio(P < 0.01),whereas negative correlations were found between the soil C/N ratio and latitude,temperature,soil bulk density and soil p H.Ordinary Cokriging interpolation showed that r and ME were 0.73 and 0.57,respectively,indicating that the prediction accuracy was high.The spatial autocorrelation of the soil C/N ratio was 6.4 km,and the nugget effect of the soil C/N ratio was 10% with a patchy distribution,in which the area with high value(12.00–20.41) accounted for 22.6% of the total area.Land uses changed the soil C/N ratio with the order of cultivated land > grass land > forest land > garden.Multiple regression analysis showed that geographical and climatic factors,and soil physical and chemical properties could independently explain 26.8%and 55.4% of the spatial features of soil C/N ratio,while human activities could independently explain 5.4% of the spatial features only.The spatial distribution of soil C/N ratio in the study has important reference value for managing soil carbon and nitrogen,and for improving ecological function to similar regions.
基金supported by the State Key Research Development Program of China (Grant 2016YFC0502002)Youth Innovation Research Team Project (LENOM2016Q0003)
文摘Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe.
基金This work was supported by the grants of the Know-ledge Innovation Program of the Chinese Academy of Sciences(KZCX2-413)the fund of Shenyang Experimental Station of Ecology,Chinese Academy of Sciences(SYZ0204).
文摘Many attempts have been made to estimate the soil organic carbon (SOC) storage under different land uses, especiallyfrom the conversion of forest land or grassland into cultivated field, but limited reports were found on the estimation ofthis storage after cultivated field converted into woodland or grassland, especially in small scales. This study is aimed toinvestigate the dynamics of SOC concentration, its storage and carbon /nitrogen (C/N) ratio in an aquic brown soil at theShenyang Experimental Station of Ecology, Chinese Academy of Sciences under four land use patterns over 14 years. Thefour land use patterns were paddy field (PF), maize field (MF), fallow field (FF) and woodland (WL). In each pedon at 0-150cm depth, soil samples were collected from ten layers. The results showed that the profile distribution of SOC was differentunder different land uses, indicating the effect of land use on SOC. Soil organic carbon was significantly related with soiltotal N, and the correlation was slightly closer in nature ecosystems (with R2=0.990 and P<0.001 in both WL and FF, n=30)than in agroecosystems (with R2=0.976 and P<0.001 in PF, and R2=0.980 and P<0.001 in MF, n=30). The C/N ratio in theprofiles decreased generally with depth under the four land use patterns, and was comparatively higher in WL and lowerin PF. The C/N ratio of the FF was closer to that in the same soil depths of MF than to that of PF. Within 100 cm depth, theannual sequestration of SOC was 4.25, 2.87, and 4.48 t ha-1 more in WL than in PF, MF and FF, the annual SOC increasingrate being 6.15, 3.26, and 5.09 % higher, respectively. As a result, the SOC storage was significantly greater in WL than inany of the other three land use patterns, P=0.001, 0.008, and 0.008 as compared with PF, MF, and FF, respectively, whilethere was no significant difference among the other three land uses. It is suggested that woodland has the potential tomake a significant contribution to C storage and environmental quality.
基金supported by the National Key Research and Development Program of China (2016YFD0300901 and 2016YFD0200101)the Fundamental Research Funds for Central Non-profit Scientific Institution of China (161032019035 and 161032019020)the National Basic Research Program of China (973 Program) (2011CB100501)
文摘Soil productivity(SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield.However,there have been difficulties in estimating values of SPs for soils after various long-term field treatments because the treatment without external fertilization is used but is depleted in soil nutrients,leading to erroneous estimation.The objectives of this study were to estimate the change of SP across different cropping seasons using pot experiments,and to evaluate the steady SP value(which is defined by the basal contribution of soil itself to crop yield) after various longterm fertilization treatments in soils at different geographical locations.The pot experiments were conducted in Jinxian of Jiangxi Province with paddy soil,Zhengzhou of Henan Province with fluvo-aquic soil,and Gongzhuling of Jilin Province with black soils,China.Soils were collected after long-term field fertilization treatments of no fertilizer(control;CK-F),chemical fertilizer(NPK-F),and combined chemical fertilizer with manure(NPKM-F).The soils received either no fertilizer(F0) or chemical fertilizer(F1) for 3-6 cropping seasons in pots,which include CK-P(control;no fertilizer from long-term field experiments for pot experiments),NPK-P(chemical fertilizer from long-term field experiments for pot experiments),and NPKM-P(combined chemical and organic fertilizers from long-term field experiments for pot experiments).The yield data were used to calculate SP values.The initial SP values were high,but decreased rapidly until a relatively steady SP was achieved at or after about three cropping seasons for paddy and fluvo-aquic soils.The steady SP values in the third cropping season from CK-P,NPK-P,and NPKM-P treatments were 37.7,44.1,and 50.0% in the paddy soil,34.2,38.1,and 50.0% in the fluvo-aquic soil,with the highest value observed in the NPKM-P treatment for all soils.However,further research is required in the black soils to incorporate more than three cropping seasons.The partial least squares path mode(PLS-PM) showed that total N(nitrogen) and C/N ratio(the ratio of soil organic carbon and total N) had positive effects on the steady SP for all three soils.These findings confirm the significance of the incorporation of manure for attaining high soil productivity.Regulation of the soil C/N ratio was the other main factor for steady SP through fertilization management.
基金supported by the National Natural Science Foundation of China(No.30770400,40231003)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-408)
文摘Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study.
文摘Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.
基金the National Natural Science Foundation of China (No. 30725006, 40730102)the Chinese Ecological Research Net
文摘Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana...
文摘The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted.
基金supported by Scientific Research Projects Coordination Unit of Istanbul University,Project Number:International Research Projects:IRP-27803,as a part of an international collaboration between Istanbul University,IstanbulTurkey and Korea University,Seoul-Korea
文摘Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences.
文摘Two 3-year (2008-2010, wheat-pea-barley) field experiments were conducted on certified organic farms near Spalding (Dark Brown Chernozem-Typic Haploboroll) and Star City (Gray Luvisol-Typic Haplocryalf) in northeastern Sas-katchewan, Canada, to determine the residual effects of compost, alfalfa pellets, wood ash, rock phosphate, Penicillium bilaiae, gypsum and MykePro on organic C and N (total organic C [TOC], total organic N [TON], light fraction organic C [LFOC], light fraction organic N [LFON]) and mineralizable N (Nmin) in the 0 - 15 cm soil layer, and ammonium-N, nitrate-N, extractable P, exchangeable K and sulphate-S in the 0 - 15, 15 - 30 and 30 - 60 cm soil layers in autumn 2010. Compared to the unamended control, mass of TOC, TON, LFOC and LFON increased with compost and alfalfa pellets in both soils. However, the increases were much more pronounced for LFOC (by 125% - 133%) or LFON (by 102% - 103%) than TOC (by 19% - 29%) or TON (by 25% - 40%). The Nmin also increased in these two treatments compared to the control, but the increases were much smaller for compost than alfalfa pellets. In general, residual nitrate-N increased with increasing rate of compost and alfalfa pellets in the 0 - 15 and 15 - 30 cm layers in both soils. Extractable P increased with compost and exchangeable K with alfalfa pellets, but only in the 0 - 15 cm soil layer. Sulphate-S increased with compost, but mainly in the 30 - 60 cm soil layer. Soil pH usually increased with compost and more so with wood ash, but no effect of any amendment on ammonium-N. Overall, the quantity of organic C and N, and available nutrients in soil increased with compost and/or alfalfa pellets, but the magnitude varied with amendment and/or soil type. In conclusion, our findings suggest that soil quality and fertility can be improved with these organic amendments, suggesting sustainability of production from organic crops.
文摘Traditionally, soil-testing laboratories have used a variety of methods to determine soil organic matter, yet they lack a practical method to predict potential N mineralization/immobilization from soil organic matter. Soils with high micro-bial activity may experience N immobilization (or reduced net N mineralization), and this issue remains unresolved in how to predict these conditions of net mineralization or net immobilization. Prediction may become possible with the use of a more sensitive method to determine soil C:N ratios stemming from the water-extractable C and N pools that can be readily adapted by both commercial and university soil testing labs. Soil microbial activity is highly related to soil organic C and N, as well as to water-extractable organic C (WEOC) and water-extractable organic N (WEON). The relationship between soil respiration and WEOC and WEON is stronger than between respiration and soil organic C (SOC) and total organic N (TON). We explored the relationship between soil organic C:N and water-extractable organic C:N, as well as their relationship to soil microbial activity as measured by the flush of CO2 following rewetting of dried soil. In 50 different soils, the relationship between soil microbial activity and water-extractable organic C:N was much stronger than for soil organic C: N. We concluded that the water-extractable organic C:N was a more sensitive measurement of the soil substrate which drives soil microbial activity. We also suggest that a water-extractable organic C:N level > 20 be used as a practical threshold to separate those soils that may have immobilized N with high microbial activity.
基金supported by the National Natural Science Foundation of China (41671295)the National Technology R&D Pillar Program in the 12th Five Year Plan of China (2012BAD15B04)
文摘Soil organic carbon (SOC) and soil inorganic carbon (SIC) are important C pools in the Loess Plateau of Northwest China, however, variations of SOC and SIC stocks under different cultivation practices and nitrogen (N) fertilization rates are not clear in this area. A long-term field experiment started in June 2003 was conducted to investigate the SOC and SIC stocks in a calcareous soil of the Chinese Loess Plateau under four cultivation practices, i.e., fallow (FA), conventional cultivation (CC), straw mulch (SM), and plastic film-mulched ridge and straw-mulched furrow (RF), in combination with three N fertilization rates, i.e., 0 (NO), 120 (N120), and 240 (N240) kg N/hm2. Results indicate that the crop straw addition treatments (SM and RF) increased the contents of soil microbial biomass C (SMBC) and SOC, and the SOC stock increased by 10.1%-13.3% at the upper 20 cm soil depth in comparison to the 8-year fallow (FA) treatment. Meanwhile, SIC stock significantly increased by 19% at the entire tested soil depth range (0-100 cm) under all crop cultivation practices in comparison to that of soil exposed to the long-term fallow treatment, particularly at the upper 60 cm soil depth. Furthermore, moderate N fertilizer application (120 kg N/hm2) increased SOC stock at the upper 40 cm soil depth, whereas SIC stock decreased as the N fertilization rate increased. We conclude that the combined application of crop organic residues and moderate N fertilization rate could facilitate the sequestrations of SOC and SIC in the calcareous soil.
文摘Land-use conversion and unsustainable farming practices are degrading native forest ecosystems of Ghana’s humid savannah agro-ecological zone. This study assessed the impact of land-use change on soil C and N stocks in different land-use systems and soil types. A total of eighty (80) composite soil samples at two depths (0 - 20 cm and 20 - 50 cm) were sampled from five land use types (Forest, Woodland savannah, Grassland, Fallow and Cropland) for laboratory analyses. Particle size distribution, bulk density, pH, SOC and TN were determined using standard procedures. Results of the study indicated that C and N stocks were significantly lower in croplands (p < 0.05) compared to other land-use systems. There were significant interactions (p < 0.05) within land-use systems, soil types, and soil depth for soil C and N stocks. Acrisol and associated soils had the highest C and N stocks. A strong positive significant correlation (p < 0.05) was observed between C and N stocks with an R<sup>2</sup> value of 0.85 and 0.93 for the 0 - 20 and 20 - 50 cm depth, respectively. Soil C and N stocks in the study area were estimated to be 34.56 kg/m<sup>2</sup> and 4.63 kg/m<sup>2</sup> for soil types and 26.89 kg/m<sup>2</sup> and 3.39 kg/m2 for land use types, respectively for the 0 to 50 cm soil depth. Our findings indicated that the conversion of native forest to arable land has significantly reduced soil C and N stocks in the top 50 cm (0.50 m) soil layer by 50.77% and 47.77%, respectively. Therefore, we conclude that land-use change, soil type, and soil depth influenced soil C and N stocks of land-use systems in the humid savannah agro-ecological zone of Ghana.
文摘Land degradation,unbalanced nutrition,change in climate and its extreme variability are the factors affecting the sustainability of agriculture and food security.In North-west Pakistan,more than 50%of the cultivated area is rain-fed and the crop productivity is low.Conservation agriculture reduces greenhouse gas emissions by enhancing soil carbon sequestration and then improved soil fertility,WUE and crop productivity.A field experiment
文摘A pot experiment was conducted to investigate the effect of cow dung, rice husks, calcium chloride and gypsum on soil reclamation and compare the effect of organic and inorganic amendments on soil reclamation during the period of 5th March to 20th April, 2017. The experiment was laid to fit a completely randomized design (CRD) with seven treatments [Reference soil (T0), Cow dung (T1), Rice husk (T2), Gypsum (T3), Calcium chloride (T4), Cow dung + Rice husk (T5) and Gypsum + Calcium chloride (T6)] each having three replications for this experiment. After incubation (45 days), the laboratory investigation was carried out in the Soil, Water and Environment Discipline, Khulna University, Khulna, Bangladesh. Results indicate that the individual or combined effect of gypsum (T3) was more effective in changing EC and SAR. Gypsum application in combination with calcium chloride (T6) improved the soil chemical properties by reducing the EC. Among the treatment, calcium chloride (T4) had a remarkable effect in reducing sodium adsorption ratio and gypsum had a remarkable effect in reducing pH. Cow dung (T1), rice husk (T2), combination of cow dung and rice husk (T5) were less effective to reduce EC, pH and SAR. It’s measured for soils of different soil amendments varied significantly
基金funded by the National Natural Science Foundation of China (41201284, 41401337)the China Postdoctoral Science Foundation (2013M542406)
文摘Increased food demand from the rapidly growing human population has caused intensive land transition from desert to farmland in arid regions of northwest China. In this developing ecosystem, the optimized fertilization strategies are becoming an urgent need for sustainable crop productivity, efficient resources use, together with the delivery of ecosystems services including soil carbon(C) and nitrogen(N) accumulation. Through a 7-year field experiment with 9 fertilization treatments in a newly cultivated farmland, we tested whether different fertilizations had significant influences on soil C and N accumulation in this developing ecosystem, and also investigated possible mechanisms for this influence. The results showed that applying organic manure in cultivated farmland significantly increased the soil C and N accumulation rates; this influence was greater when it was combined with chemical fertilizer, accumulating 2.01 t C and 0.11 t N ha^(–1) yr^(–1) in the most successful fertilization treatment. These high rates of C and N accumulation were found associated with increased input of C and N, although the relationship between the N accumulation rate and N input was not significant. The improved soil physical properties was observed under only organic manure and integrated fertilization treatments, and the significant relationship between soil C or N and soil physical properties were also found in this study. The results suggest that in newly cultivated farmland, long term organic manure and integrated fertilization can yield significant benefits for soil C and N accumulation, and deliver additional influence on physical properties.