It is observed that the adsorption of chromium are greater on kaolinite minerals, red soil (R) and laterite (L) colloids than that on montmorillonite, indicotic black (IB) and yellow brown (YB) soil colloids. The adso...It is observed that the adsorption of chromium are greater on kaolinite minerals, red soil (R) and laterite (L) colloids than that on montmorillonite, indicotic black (IB) and yellow brown (YB) soil colloids. The adsorption process of Cr Ⅵ on these media can be further described by Langmuir or Freundlich equation quite well. The adsorption reaction of Cr Ⅵ is fast, and the adsorption equilibrium can be reached within the first two hours in moderate temperature. The adsorption quantity of Cr Ⅵ to kaolinite mineral increased with the increasing pH in the range of 2.0 to 7.0, then decreased at higher pH. But it showed some consistence among the four soil colloids. The lower the pH, the stronger the adsorption. The possible mechanisms are further discussed here. Meanwhile the influence of temperature on Cr Ⅵ adsorption on different soil colloid and clay minerals are also investigated.展开更多
Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous micro...Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.展开更多
The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination...The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.展开更多
Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the anal...Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the analysis speed and accuracy, two calibration models are built with the support vector machine method: one considering the whole spectra and the other based on the segmental spectra input. Considering the results of the multiple linear regression analysis, three segmental spectra are chosen as the input variables of the support vector regression (SVR) model. Compared with the results of the SVR model with the whole spectra input, the relative standard error of prediction is reduced from 3.18% to 2.61% and the running time is saved due to the decrease in the number of input variables, showing the robustness in rapid soil analysis without the concentration gradient samples.展开更多
This paper presents an evaluation of different dose of Sodium Metabisulfite (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water for the removal of soil contaminated with Pb, Zn and Cr by the column mode. The ...This paper presents an evaluation of different dose of Sodium Metabisulfite (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water for the removal of soil contaminated with Pb, Zn and Cr by the column mode. The field soil contained concentrations of Pb (307.31 mg⋅kg−1), Zn (207.77 mg⋅kg−1) and Cr (447.50 mg⋅kg−1). Both (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water were found to be effective on removing (Na2S2O5) Pb, Cr and Zn respectively. (Na2S2O5) + (0.1 HCl) Cr, Zn and Pb respectively. Sulfur Pb, Cr and Zn respectively. The removal rate of Pb, Zn, and Cr varied from 10.35% - 26%, 3.4% - 21.60% and 4.97% - 23.88% for (0.01 M Na2S2O5 respectively. The removal rate of Pb, Zn, and Cr varied from 16.13% - 20.07%, 8.20% - 23.48%, 5.42% - 28.93% for (0.01 M Na2S2O5 + 0.1 M HCl) respectively. The removal rate of Pb, Zn, and Cr varied from 10.20% - 25.5%, 9.55% - 25.13% and 6.04% - 25.54% for (S) respectively.展开更多
Some laboratory diffusion tests were conducted with diffusion device to determine the diffusion coefficient of Cr(Ⅵ) ion passing through Dalian red clay samples. The concentrations of Cr(Ⅵ) at different places of th...Some laboratory diffusion tests were conducted with diffusion device to determine the diffusion coefficient of Cr(Ⅵ) ion passing through Dalian red clay samples. The concentrations of Cr(Ⅵ) at different places of the samples were then measured spectrophotometrically after a standing time of 1 000 d. A one-dimensional solute transport equation was used to simulate the transport of Cr(Ⅵ) through clay samples. Back-calculation of diffusion coefficient of Cr(Ⅵ) was made with finite difference method. Parametric analysis was conducted to simulate variations in soil dry density, temperature, pH and standing time. The results show that the method used in this paper is simple and effective. The diffusion coefficient of Cr(Ⅵ) in Dalian red clay varies from 1.50×10-7 cm2/s to 2.08×10-7 cm2/s. After 1 000 d diffusion, the concentration of the source solution drops down to 1.27 mg/L from 62.5 mg/L, and the diffusion distance is only 3.5 cm. Under the assumption that diffusion coefficient is constant, the diffusion effect becomes more obvious with lower density, lower temperature, higher pH value, and much more time.展开更多
借助Web of Science,利用文献计量学方法定量分析了2001—2015年15年间发表的与Cr污染土壤修复相关的文献,研究了Cr污染土壤修复在不同时期(2001—2005、2006—2010、2011—2015年)的发展与演变,对比了不同阶段Cr污染土壤修复技术发展...借助Web of Science,利用文献计量学方法定量分析了2001—2015年15年间发表的与Cr污染土壤修复相关的文献,研究了Cr污染土壤修复在不同时期(2001—2005、2006—2010、2011—2015年)的发展与演变,对比了不同阶段Cr污染土壤修复技术发展的异同点。文献计量分析显示,Cr污染土壤修复历程由早期的以电动力修复、生物修复主导的应用可行性研究,逐渐转向土壤淋洗修复、钝化还原修复以及以筛选修复菌种与修复植物为核心的生物修复技术研究时期,进而向多技术联合修复、新技术和新材料的探索研究阶段发展,学科交叉融合不断增强。Cr污染土壤修复技术3个阶段的研究内容由少至多,由浅入深,材料功能优化和环境友好化日益成为研究的驱动力。历经数十年发展后,以负载和纳米化为特征的新型修复材料制备及应用将成为下一阶段的研究重点,而修复技术的深度融合与地域化适应将是修复技术实际应用中需要突破的瓶颈。展开更多
文摘It is observed that the adsorption of chromium are greater on kaolinite minerals, red soil (R) and laterite (L) colloids than that on montmorillonite, indicotic black (IB) and yellow brown (YB) soil colloids. The adsorption process of Cr Ⅵ on these media can be further described by Langmuir or Freundlich equation quite well. The adsorption reaction of Cr Ⅵ is fast, and the adsorption equilibrium can be reached within the first two hours in moderate temperature. The adsorption quantity of Cr Ⅵ to kaolinite mineral increased with the increasing pH in the range of 2.0 to 7.0, then decreased at higher pH. But it showed some consistence among the four soil colloids. The lower the pH, the stronger the adsorption. The possible mechanisms are further discussed here. Meanwhile the influence of temperature on Cr Ⅵ adsorption on different soil colloid and clay minerals are also investigated.
基金Project(2018SK2044)supported by the Innovation Program of Science&Technology of Hunan Province,ChinaProject(51304250)supported by the National Natural Science Foundation of China
文摘Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO3-, Mn4+ and Fe3+ and,before SO42- reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.
基金Project(K0802144-31) supported by the Program of Science and Technology of Changsha, ChinaProjects(2006AA06Z374, 2007AA021304) supported by the National Hi-tech Research and Development Program of China
文摘The environmental risk of chromium pollution is pronounced in soils adjacent to chromate industry. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by chromium. 45 soil samples obtained from different places of the slag heap in a steel alloy factory were analyzed for chromium contamination level and its effect on soil microorganisms and enzyme activities. The results show that the average concentrations of total Cr in the soil under the slag heap, adjacent to the slag heap and outside the factory exceed the threshold of Secondary Environmental Quality Standard for Soil in China by 354%, 540% and 184%, respectively, and are 15, 21 and 9 times higher than the local background value, respectively. Elevated chromium loadings result in changes in the activity of the soil microbe, as indicated by the negative correlations between soil microbial population and chromium contents. Dehydrogenase activity is greatly depressed by chromium in the soil. The results imply that dehydrogenase activity can be used as an indicator for the chromium pollution level in the area of the steel alloy factory.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2014AA06A513 and 2013AA065502the National Natural Science Foundation of China under Grant No 61378041the Anhui Province Outstanding Youth Science Fund of China under Grant No 1508085JGD02
文摘Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the analysis speed and accuracy, two calibration models are built with the support vector machine method: one considering the whole spectra and the other based on the segmental spectra input. Considering the results of the multiple linear regression analysis, three segmental spectra are chosen as the input variables of the support vector regression (SVR) model. Compared with the results of the SVR model with the whole spectra input, the relative standard error of prediction is reduced from 3.18% to 2.61% and the running time is saved due to the decrease in the number of input variables, showing the robustness in rapid soil analysis without the concentration gradient samples.
文摘This paper presents an evaluation of different dose of Sodium Metabisulfite (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water for the removal of soil contaminated with Pb, Zn and Cr by the column mode. The field soil contained concentrations of Pb (307.31 mg⋅kg−1), Zn (207.77 mg⋅kg−1) and Cr (447.50 mg⋅kg−1). Both (0.01 M Na2S2O5), (Na2S2O5) + (0.1 HCl), and Distilled water were found to be effective on removing (Na2S2O5) Pb, Cr and Zn respectively. (Na2S2O5) + (0.1 HCl) Cr, Zn and Pb respectively. Sulfur Pb, Cr and Zn respectively. The removal rate of Pb, Zn, and Cr varied from 10.35% - 26%, 3.4% - 21.60% and 4.97% - 23.88% for (0.01 M Na2S2O5 respectively. The removal rate of Pb, Zn, and Cr varied from 16.13% - 20.07%, 8.20% - 23.48%, 5.42% - 28.93% for (0.01 M Na2S2O5 + 0.1 M HCl) respectively. The removal rate of Pb, Zn, and Cr varied from 10.20% - 25.5%, 9.55% - 25.13% and 6.04% - 25.54% for (S) respectively.
基金Supported by National Natural Science Foundation of China (No. 50679015).
文摘Some laboratory diffusion tests were conducted with diffusion device to determine the diffusion coefficient of Cr(Ⅵ) ion passing through Dalian red clay samples. The concentrations of Cr(Ⅵ) at different places of the samples were then measured spectrophotometrically after a standing time of 1 000 d. A one-dimensional solute transport equation was used to simulate the transport of Cr(Ⅵ) through clay samples. Back-calculation of diffusion coefficient of Cr(Ⅵ) was made with finite difference method. Parametric analysis was conducted to simulate variations in soil dry density, temperature, pH and standing time. The results show that the method used in this paper is simple and effective. The diffusion coefficient of Cr(Ⅵ) in Dalian red clay varies from 1.50×10-7 cm2/s to 2.08×10-7 cm2/s. After 1 000 d diffusion, the concentration of the source solution drops down to 1.27 mg/L from 62.5 mg/L, and the diffusion distance is only 3.5 cm. Under the assumption that diffusion coefficient is constant, the diffusion effect becomes more obvious with lower density, lower temperature, higher pH value, and much more time.
文摘借助Web of Science,利用文献计量学方法定量分析了2001—2015年15年间发表的与Cr污染土壤修复相关的文献,研究了Cr污染土壤修复在不同时期(2001—2005、2006—2010、2011—2015年)的发展与演变,对比了不同阶段Cr污染土壤修复技术发展的异同点。文献计量分析显示,Cr污染土壤修复历程由早期的以电动力修复、生物修复主导的应用可行性研究,逐渐转向土壤淋洗修复、钝化还原修复以及以筛选修复菌种与修复植物为核心的生物修复技术研究时期,进而向多技术联合修复、新技术和新材料的探索研究阶段发展,学科交叉融合不断增强。Cr污染土壤修复技术3个阶段的研究内容由少至多,由浅入深,材料功能优化和环境友好化日益成为研究的驱动力。历经数十年发展后,以负载和纳米化为特征的新型修复材料制备及应用将成为下一阶段的研究重点,而修复技术的深度融合与地域化适应将是修复技术实际应用中需要突破的瓶颈。