期刊文献+
共找到2,049篇文章
< 1 2 103 >
每页显示 20 50 100
Effects of Vegetation Restoration Age on Soil C:N:P Stoichiometry in Yellow River Delta Coastal Wetland of China
1
作者 CAO Qixue WANG Xiaojie +7 位作者 CHU Xiaojing ZHAO Mingliang WANG Lianjing SONG Weimin LI Peiguang ZHANG Xiaoshuai XU Shendong HAN Guangxuan 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1045-1059,共15页
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s... Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands. 展开更多
关键词 coastal wetland restoration age soil C:n:P stoichiometry soil properties plant species diversity Yellow River Delta of China
下载PDF
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
2
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes soil n soil Organic C Green Manure Deer Browse Forage Cropping Systems
下载PDF
Evaluation of the Level of Pollution by Heavy Metals of Market Garden Soils along the Chari River in Ndjamena: Case of the 9th and 7th Districts
3
作者 Kotva Wana Mackaye Hassane Taisso +1 位作者 Likius Andossa Béral Djétenbé 《Agricultural Sciences》 2024年第8期939-961,共23页
The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi an... The main aim of this study was to characterize the metal content of soils used for market gardening along the Chari river: the 7th and 9th districts of NDjaména. To achieve this, two sites were selected: Gassi and Walia, and two control sites (Gassi and Walia). A total of fifty (50) soil samples were taken (24 from the Gassi site, 24 from the Walia site and 2 as control soils) and then analyzed to determine a number of physico-chemical parameters (pH, OM and electrical conductivity) and heavy metal concentrations in the various soils. The TME content (As, Cd, Cu, Cr, Ni, Pb, Hg and Zn) of the soils was determined by plasma-coupled Atomic Emission Spectrometry. In order to assess the level of contamination in Gassi and Walia soils, the geoaccumulation index (GeoIndex), contamination factor and degree of contamination were calculated. Results for physico-chemical parameters revealed that pH ranged from acidic (4.6) to moderately neutral (6.5), electrical conductivity was higher in cultivated soils (mean 292.14 μs/cm) than in control soils (mean 149.33 μs/cm), and soils were rich in organic matter. Overall, heavy metal concentrations in cultivated soils were higher than in control soils. The pollution estimate shows that soils in the area have no moderate contamination. The increase in TME concentrations in cultivated soils is thought to be due to the input of agricultural inputs to the soil. However, these levels are below the Average shale reference and Canadian guidelines for agricultural soil quality. Principal component analysis shows that metals are positively and significantly correlated with each other, and negatively and moderately significantly correlated with each other. 展开更多
关键词 COnTAMInATIOn Agricultural soils City of n’Djaména ETM Gassi Walia
下载PDF
Effects of long-term elevated CO_2 on N_2-fixing,denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain 被引量:4
4
作者 郑俊强 韩士杰 +2 位作者 任飞荣 周玉梅 张岩 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期283-287,共5页
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete... A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. 展开更多
关键词 elevated CO2 forest soil nitrifying enzyme denitrifying enzyme n2-fixing enzyme
下载PDF
Effect of Reducing Chemical Fertilizer on Rice Yield,Output Value,Content of Soil Carbon and Nitrogen after Utilizing the Milk Vetch 被引量:6
5
作者 周兴 李再明 +5 位作者 谢坚 廖育林 杨曾平 鲁艳红 聂军 曹卫东 《Agricultural Science & Technology》 CAS 2015年第2期266-271,共6页
A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back o... A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients. 展开更多
关键词 Chinese milk vetch Chemical fertilizer amounts RICE YIELD Economic benefits Content of soil C and total n
下载PDF
Major factors controlling nitrous oxide emission and methane uptake from forest soil 被引量:3
6
作者 张秀君 陈冠雄 徐慧 《Journal of Forestry Research》 SCIE CAS CSCD 2001年第4期239-242,277,共5页
Soil samples were taken from depth of 0-12 cm in virgin broad-leaved Korean pine mixed forest in Changbai Moun-tain in July 2000. The effects of temperature, soil water content, pH, NH4+ and NO3- on N2O emission and C... Soil samples were taken from depth of 0-12 cm in virgin broad-leaved Korean pine mixed forest in Changbai Moun-tain in July 2000. The effects of temperature, soil water content, pH, NH4+ and NO3- on N2O emission and CH4 uptake of a for-est soil were studied in laboratory by the method of orthogonal design. It was observed under laboratory conditions in this study that there were significant correlations between N2O emission rate, CH4 oxidation rate, soil pH and temperature. Nevertheless, N2O emission rate also showed a significant positive correlation with CH4 oxidation rate. The results suggested that pH and temperature were important factors controlling N2O emission and CH4 oxidation under this experiment conditions. 展开更多
关键词 n2O emission CH4 uptake Orthogonal design Forest soil
下载PDF
Nitrification and Denitrification Activities and N_2O Emission of Orchard Soils Cultivated for Different Periods of Time
7
作者 张玉树 丁洪 +3 位作者 胡晓霞 张生才 秦胜金 郑祥洲 《Agricultural Science & Technology》 CAS 2012年第4期843-848,共6页
[Objective] The aim was to investigate the differences in nitrification and denitrification activities and the N20 emission of orchard soils cultivated for different periods of time. [Method] Incubation experiment was... [Objective] The aim was to investigate the differences in nitrification and denitrification activities and the N20 emission of orchard soils cultivated for different periods of time. [Method] Incubation experiment was conducted to determine the ni- trification and denitrification activities and N20 emission of three types of orchard soil samples that had been cultivated for 5, 12 and 20 years, respectively, by using the virgin soil sample as control. [Result] After 26 d of incubation, the nitrification rates of nitrogen fertilizer in the virgin soil sample and the orchard soil samples cultivated for 5, 12 and 20 years were 6.85%, 10.26%, 13.29% and 12.90%, respectively, which were positively correlated with content of soil organic matter, ammonium nitro- gen and total nitrogen (P〈0.05), and negatively correlated with soil carbon-nitrogen ratio and pH value (P〈0.05). The denitrification activities of these soil samples in- creased with the increase of cultivation years. The amount of nitrogen loss by deni- trification accounted for 0.01%-3.11% of the amount of fertilizer nitrogen, and had a positive correlation with the content of soil organic matter (P〈0.05). The N20 emis- sions of orchard soil samples were higher than that of the virgin soil samples (P〈 0.05). [Conclusion] In South China, the nitrification activity of orchard soil is relatively low, but it has a tendency to increase as the cultivation years increases; the denitri- fication activity is relatively high, and increases significantly with the increase of culti- vation years. 展开更多
关键词 Orchard soil nITRIFICATIOn DEnITRIFICATIOn n2O emission
下载PDF
Effect of Measurement Time on Emission Flux of CO_2 and N_2O in Black Soil Region
8
作者 乔云发 韩晓增 赵兰坡 《Agricultural Science & Technology》 CAS 2012年第2期361-364,共4页
[Objective] The aim was to investigate and reveal effect of measurement time on emission flux of CO2 and N2O to ensure the optimum time of emission flux, in order to provide scientific reference for emission reduction... [Objective] The aim was to investigate and reveal effect of measurement time on emission flux of CO2 and N2O to ensure the optimum time of emission flux, in order to provide scientific reference for emission reduction of greenhouse gas in black soil region. [Method] Based on experiment of long-term fertilizer location in black soil region, the paper studied on daily dynamic variation of CO2 and N2O discharge in 3 key growth periods (booting stage, grain-filling stage and mature stage) to reveal differences of CO2 and N2O emission flux in different times. [Result] Daily variations of CO2 and N2O emission flux were large, from 205 mg/(m2·h) to 552 mg/(m2·h) for CO2 and from 51 h to 295 μg/(m2·h) for N2O. Trend of CO2 discharge in different growth times showed a unimodal curve, and the peak was at noon of 12:00 and the peak valley was at 3:00 am; discharge of N2O was small in day time at booting stage and large at night. Regardless of rice growth period effect on CO2 and N2O emission flux, representative time of CO2 discharge was 6:00-8:00 or 16:00-21:00; and time of N2O was 8:00-10:00 or 16:00-21:00; if CO2 and N2O emission fluxes were measured simultaneously, the optimum time was 16:00-18:00; if the measurement was started during 9:00-12:00, correction coefficients of CO2 and N2O were 0.81 and 0.90, respectively. [Conclusion] The result provided scientific reference for reduction of greenhouse gas emission in black soil region. 展开更多
关键词 CO2 n2O Black soil Measurement time
下载PDF
Preliminary Analysis on Abnormal Granularity Layers of Soil Profile and the Response of Relative Factors in Loess Plateau
9
作者 吕海波 梁宗锁 《Agricultural Science & Technology》 CAS 2011年第11期1671-1673,1690,共4页
[Objective] The paper was to analyze organic carbon content (SOC), granularity, total nitrogen content (TN), carbon-nitrogen ratio (C/N), calcium carbonate content (CaCO3) of 1cm soil profiles in returning for... [Objective] The paper was to analyze organic carbon content (SOC), granularity, total nitrogen content (TN), carbon-nitrogen ratio (C/N), calcium carbonate content (CaCO3) of 1cm soil profiles in returning forest in Zhifanggou watershed of Ansai County in Loess Plateau, so as to study the changes of physical and chemical properties in abnormal layer of soil reflected with granularity, as well as the physical and chemical responses of soil. [Method] Three quadrats with the size of 10 m×10 m were randomly selected in three sampling plots in Loess Plateau, three profiles in upper, middle and lower slope were excavated, and the samples were collected with interval of 10 cm; the surface layer with the depth of 0-10 cm was divided into two layers of 0-5 and 5-10 cm for sampling, respectively. Eleven samples were collected in each profile with a total of 99 samples. Its organic carbon content, granularity, total nitrogen content, carbon-nitrogen ratio and CaCO3 content were analyzed. [Result] The soil profiles in three sampling sites contained five characteristic layers, including a1, b1, b2, c1 and c2, the content of soil granule with particle size less than 0.02 mm decreased, and those with particle size 0.02 mm increased, the organic carbon content and C/N value (a1, b1, b2, c2) increased, but the increase trend of CaCO3 content was not obvious. [Conclusion] The study shows that the characteristic soil layer is commonly existed in loess region, especially the eroded loess region, which should be paid attention in the research fields of modern soil science and ecology. 展开更多
关键词 SOC C/n Ancient soil layer
下载PDF
Effects of N,P and K Fertilizers on Growth of Clover Nitrogen-fixing Rhizobia and Soil Fertility after Plantation
10
作者 刘亚柏 朱庆锋 +1 位作者 毕道杰 王润芳 《Agricultural Science & Technology》 CAS 2016年第4期906-911,915,共7页
In order to develop organic rice and increase paddy soil fertility by cloverorganic rice rotation, the effects of N, P and K fertilizers on growth of clover nitrogen-fixing rhizobia and soil fertility after plantation... In order to develop organic rice and increase paddy soil fertility by cloverorganic rice rotation, the effects of N, P and K fertilizers on growth of clover nitrogen-fixing rhizobia and soil fertility after plantation were investigated, thereby providing certain reference for reasonable cultivation of clover and improvement of soil fertility. A two-year experiment was conducted from 2012 to 2013. The clover was cultivated after rice every year, and different levels of N, P and K fertilizers were applied before winter. In the treatment group, no fertilizer was applied. The effects of different fertilizers and different application amounts on clover yield, nitrogen-fixing rhizobia quantity, nitrogen-fixing rhizobia weight and soil fertility after plantation were analyzed. The results showed that the application of N, P and K fertilizers in the early stage had significantly effect on the growth of clover. When the application amount of N fertilizer was 75 kg/hm^2(N 46%), the clover yield, nitrogen-fixing rhizobia quantity and nitrogen-fixing rhizobia weight were highest. The soil nitrogen content after plantation increased with the increase of the application amount of N fertilizer, while the P and K content decreased and then increased with the increased application amounts. Soil available P content increased with the increased application amounts of N and P fertilizers, but it did not change significantly with the increased application amount of K fertilizer. Soil available K content increased first and then decreased with the increased application amounts of N and P fertilizers.When the application amounts of N and P fertilizers were 150(N 46%) and 300(P_2O_5 12%) kg/hm^2, soil available K content reached the maximum. Soil organic matter content increased with the increased application amounts of N, P and K fertilizers. Therefore, in the cultivation of clover, appropriate application of N, P and K fertilizers in the early stage can improve clover yield and soil fertility. 展开更多
关键词 n fertilizer P fertilizer K fertilizer CLOVER nitrogen-fixing rhizobia soil fertility
下载PDF
Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review 被引量:44
11
作者 JU Xiao-tang ZHANG Chong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2848-2862,共15页
The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop prod... The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop production often depends on rain-fed or irrigation to supplement rainfall. This paper summarizes the characteristics of gross nitrogen(N) transformation, the fate of N fertilizer and soil N as well as the N loss pathway, and makes suggestions for proper N management in the region. The soils of the region are characterized by strong N mineralization and nitrification, and weak immobilization and denitrification ability, which lead to the production and accumulation of nitrate in the soil profile. Large amounts of accumulated nitrate have been observed in the vadose-zone in soils due to excess N fertilization in the past three decades, and this nitrate is subject to occasional leaching which leads to groundwater nitrate contamination. Under farmer's conventional high N fertilization practice in the winter wheat-summer maize rotation system(N application rate was approximately 600 kg ha–1 yr–1), crop N uptake, soil residual N, NH_3 volatilization, NO_3~– leaching, and denitrification loss accounted for around 27, 30, 23, 18 and 2% of the applied fertilizer N, respectively. NH_3 volatilization and NO_3~– leaching were the most important N loss pathways while soil residual N was an important fate of N fertilizer for replenishing soil N depletion from crop production. The upland agricultural soils in North China are a large source of N_2O and total emissions in this region make up a large proportion(approximately 54%) of Chinese cropland N_2O emissions. The “non-coupled strong ammonia oxidation” process is an important mechanism of N_2O production. Slowing down ammonia oxidation after ammonium-N fertilizer or urea application and avoiding transient high soil NH4+ concentrations are key measures for reducing N_2O emissions in this region. Further N management should aim to minimize N losses from crop and livestock production, and increase the recycling of manure and straw back to cropland. We also recommend adoption of the 4 R(Right soure, Right rate, Right time, Right place) fertilization techniques to realize proper N fertilizer management, and improving application methods or modifying fertilizer types to reduce NH_3 volatilization, improving water management to reduce NO_3~– leaching, and controlling the strong ammonia oxidation process to abate N_2O emission. Future research should focus on the study of the trade-off effects among different N loss pathways under different N application methods or fertilizer products. 展开更多
关键词 n transformation nH3 volatilization ammonia oxidation nO3- leaching n2O emission upland agricultural soils
下载PDF
Soil Organic Nitrogen and Its Contribution to Crop Production 被引量:19
12
作者 LI Sheng-xiu WANG Zhao-hui +1 位作者 MIAO Yan-fang LI Shi-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第10期2061-2080,共20页
Plant growth and crop production depend to a large extent on soil N supplying capacity (SNSC): The higher the SNSC, the higher the dependence of crops on soil and the lower the N fertilizer recovery. Of the SNSC, s... Plant growth and crop production depend to a large extent on soil N supplying capacity (SNSC): The higher the SNSC, the higher the dependence of crops on soil and the lower the N fertilizer recovery. Of the SNSC, soil organic N (ON) played a key role in supplying N nutrient to crop production and still does in many subsistence and low-input farming systems. In this paper, soil ON contents, types, chemical components and its contribution to plant production are reviewed up to date in details, the characteristics of ON in dryland soils discussed together with its chemical components, and the mineralization and availability to plants of some important chemical components are emphasized at the last part for practical considerations. 展开更多
关键词 organic nitrogen in soil chemical components soil n supplying capacity MInERALIZATIOn COnTRIBUTIOn
下载PDF
Long-Term Application of Organic Manure and Mineral Fertilizer on N_2O and CO_2 Emissions in a Red Soil from Cultivated Maize-Wheat Rotation in China 被引量:25
13
作者 ZHAI Li-mei L1U Hong-bin ZHANG Ji-zong HUANG Jing WANG Bo-ren 《Agricultural Sciences in China》 CAS CSCD 2011年第11期1748-1757,共10页
A long-term field experiment was established to determine the influence of mineral fertilizer and organic manure on soil fertility. A tract of red soil (Ferralic Cambisol) in Qiyang Red Soil Experimental Station (Q... A long-term field experiment was established to determine the influence of mineral fertilizer and organic manure on soil fertility. A tract of red soil (Ferralic Cambisol) in Qiyang Red Soil Experimental Station (Qiyang County, Hunan Province, China) was fertilized beginning in 1990 and N20 and CO2 were examined during the maize and wheat growth season of 2007-2008. The study involved five treatments: organic manure (NPKM), fertilizer NPK (NPK), fertilizer NP (NP), fertilizer NK (NK), and control (CK). Manured soils had higher crop biomass, organic C, and pH than soils receiving the various mineralized fertilizers indicating that long-term application of manures could efficiently prevent red soil acidification and increase crop productivity. The application of manures and fertilizers at a rate of 300 kg N ha-1 yr-1 obviously increased NzO and CO2 emissions from 0.58 kg N20-N ha-~ yr-~ and 10565 kg C ha-~ yr-~ in the CK treatment soil to 3.0l kg N20-N ha-~ yr-~ and 28 663 kg C ha-~ yr-I in the NPKM treatment. There were also obvious different effects on N20 and CO2 emissions between applying fertilizer and manure. More N20 and CO2 released during the 184-d maize growing season than the 125- d wheat growth season in the manure fertilized soils but not in mineral fertilizer treatments. N20 emission was significantly affected by soil moisture only during the wheat growing season, and CO2 emission was affected by soil temperature only in CK and NP treatment during the wheat and maize growing season. In sum, this study indicates the application of organic manure may be a preferred strategy for maintaining red emissions than treatments only with mineral fertilizer. soil productivity, but may result in greater N20 and CO2 展开更多
关键词 red soil n fertilizer organic manure temperature WFPS
下载PDF
Dynamics of soil inorganic nitrogen and their responses to nitrogen additions in three subtropical forests, south China 被引量:12
14
作者 FANG Yun-ting ZHU Wei-xing +2 位作者 MO Jiang-ming ZHOU Guo-yi GUNDERSEN Per 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期752-759,共8页
Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to ... Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region. 展开更多
关键词 n deposition n saturation extractable inorganic n soil solution inorganic n subtropical China
下载PDF
Effect of N and P addition on soil organic C potential mineralization in forest soils in South China 被引量:17
15
作者 OUYANG, Xuejun ZHOU, Guoyi +4 位作者 HUANG, Zhongliang ZHOU, Cunyu LI, Jiong SHI, Junhui ZHANG, Deqiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第9期1082-1089,共8页
Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N d... Atmospheric nitrogen deposition is at a high level in some forests of South China. The effects of addition of exogenous N and P on soil organic carbon mineralization were studied to address: (1) if the atmospheric N deposition promotes soil C storage through decreasing mineralization; (2) if the soil available P is a limitation to organic carbon mineralization. Soils (0–10 cm) was sampled from monsoon evergreen broad-leaved forest (MEBF), coniferous and broad-leaved mixed forest (CBMF), and Pinus massoniana... 展开更多
关键词 ADDITIOn inorganic n available P MInERALIZATIOn soil organic C South China
下载PDF
Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China 被引量:14
16
作者 Yue LI YingHui LIU +3 位作者 YaLin WANG Lei NIU Xia XU YuQiang TIAN 《Journal of Arid Land》 SCIE CSCD 2014年第5期571-580,共10页
Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on... Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions. 展开更多
关键词 soil n mineralization soil temperature soil moisture Stipa krylovii grassland
下载PDF
Short-term effects of nitrogen deposition on soil respiration components in two alpine coniferous forests, southeastern Tibetan Plateau 被引量:9
17
作者 Jian Wang Genxu Wang +2 位作者 Yu Fu Xiaopeng Chen Xiaoyan Song 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1029-1041,共13页
Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respi... Nitrogen (N) deposition to alpine forest ecosystems is increasing gradually, yet previous studies have seldom reported the effects of N inputs on soil CO2 flux in these ecosystems. Evaluating the effects of soil respiration on N addition is of great significance for understanding soil carbon (C) budgets along N gradients in forest ecosystems. In this study, four levels of N (0, 50, 100, 150 kg N ha^-1 a^-1) were added to soil in a Picea baifouriana and an Abies georgei natural forest on the Tibetan Plateau to investigate the effect of the N inputs on soil respiration. N addition stimulated total soil respiration (Rt) and its components including heterotrophic respiration (Rh) and autotrophic respiration (Ra);however, the promoted effects declined with an increase in N application in two coniferous forests. Soil respiration rate was a little greater in the spruce forest (1.05 μmol CO2 m^-2 s^-1) than that in the fir forest (0.97 μmol CO2 m^-2 s^-1). A repeated measures ANOVA indicated that N fertilization had significant effects on Rt and its components in the spruce forest and Rt in the fir forest, but had no obvious effect on Rh or Ra in the fir forest. Rt and its components had significant exponential relationships with soil temperature in both forests. N addition also increased temperature sensitivity (Q10) of Rt and its components in the two coniferous forests, but the promotion declined as N in put increased. Important, soil moisture had great effects on Rt and its components in the spruce forest (P<0.05), but no obvious impacts were observed in the fir forest (P>0.05). Following N fertilization, Ra was significantly and positively related to fine root biomass, while Rh was related to soil enzymatic activities in both forests. The mechanisms underlying the effect of simulated N deposition on soil respiration and its components in this study may help in forecasting C cycling in alpine forests under future levels of reactive N deposition. 展开更多
关键词 n addition HETEROTROPHIC soil RESPIRATIOn AUTOTROPHIC soil RESPIRATIOn Q10 ALPInE forest ECOSYSTEM
下载PDF
Degradation induces changes in the soil C:N:P stoichiometry of alpine steppe on the Tibetan Plateau 被引量:13
18
作者 ZHANG Zhen-chao HOU Ge +2 位作者 LIU Miao WEI Tian-xing SUN Jian 《Journal of Mountain Science》 SCIE CSCD 2019年第10期2348-2360,共13页
Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing... Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe. 展开更多
关键词 Tibetan Plateau ALPInE STEPPE DEGRADATIOn soil STOICHIOMETRY C/n C/P n/P
下载PDF
Response of soil fauna to simulated nitrogen deposition: A nursery experiment in subtropical China 被引量:10
19
作者 XU Guo-liang MO Jiang-ming +3 位作者 FU Sheng-lei PER Gundersen ZHOU Guo-yi XUE Jing-Hua 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第5期603-609,共7页
We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, startin... We studied the responses of soil fauna to a simulated nitrogen deposition in nursery experimental plots in Subtropical China. Dissolved NH4NO3 was applied to the soil by spraying twice per month for 16 months, starting January 2003 with treatments of 0, 5, 10, 15 and 30 gN/(m^2·a). Soil fauna was sampled after 6, 9, 13 and 16 months of treatment in three soil depths (0-5 cm, 5-10 cm, 10-15 cm). Soil available N increased in correspondence with the increasing N treatment, whereas soil pH decreased. Bacterial and fungal densities were elevated by the N treatment. Soil fauna increased in the lower nitrogen treatments but decreased in the higher N treatments, which might indicate that there was a threshold around 10 gN/(m^2·a) for the stimulating effects of N addition. The N effects were dependent on the soil depth and sampling time. The data also suggested that the effects of the different N treatments were related to the level of N saturation, especially the concentration of NO3^- in the soil. 展开更多
关键词 soil fauna n deposition RESPOnSE Subtropical China
下载PDF
Nitrous oxide fluxes from upland soils in central Hokkaido,Japan 被引量:10
20
作者 Sonoko D.KIMURA Yo TOMA Ryusuke HATANO 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第11期1312-1322,共11页
Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido... Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido,Japan.The annual mean N2O fluxes ranged from 2.95 to 164.17 μgN/(m2·h),with the lowest observed in a grassland and the highest in an onion field.The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall eve... 展开更多
关键词 mineral n pool n2O flux soil upland cropping system
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部