Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils...Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.展开更多
Study on soil phosphorus(P) fraction is an important aspect in probing the mechanisms of soil P accumulation in farmland and mitigating its losing risk to the environment. We used a sequential extraction method to e...Study on soil phosphorus(P) fraction is an important aspect in probing the mechanisms of soil P accumulation in farmland and mitigating its losing risk to the environment. We used a sequential extraction method to evaluate the impacts of long-term fertilization and straw incorporation on inorganic, organic, and residual P(Pi, Po, and Pre) fractions in the plow layer(0–20 cm) of acidic paddy soil in southern China. The experiment comprised of six treatments:(i) no fertilizer control(CK);(ii) straw incorporation and green manure(SG);(iii) nitrogen and P fertilizer(NP);(iv) NP+SG;(v) NP+K fertilizer(NPK); and(vi) NPK+SG. The results showed that, compared to the initial total soil P content(TSP, 600 mg kg^–1 in 1990), long-term(20 years) combined continuous P fertilizer and SG significantly increased P accumulation(by 13–20%) while single fertilization(39.3 kg P ha^–1 yr^–1) could maintain soil P status at the most. The average soil P fractions comprised of extractable Pi, Po, and Pre by 51.7, 33.4, and 14.9% in total soil P, respectively. With comparison of no fertilizer addition(CK), long-term single fertilization significantly(P〈0.05) increased the accumulation of Na HCO3^–, Na OH^–, and HCl^– extractable Pi fractions accounting for two- to three-fold, while SG increased the accumulation of Na HCO3^– and Na OH^– extractable Piand Po accounting for 12–60%. Though the mobilization of Pre fractions was not significant(P〉0.05), our data indicate that SG may partially substitute for fertilizer P input and minimizing soil P accumulation and subsequent environmental risk in the subtropical paddy soil.展开更多
基金The study was supported by the 948 Program of theMinistry of Agriculture of China (2003-253) the Natural Science Foundation of Hebei Province,China (300130).
文摘Phosphorus (P) applied from fertilizer and manure is important in increasing crop yield and soil fertility; however, excessive uses of phosphate fertilizer and manure may also increase P loss from agricultural soils, posing environmental impact. A long term experiment was conducted on a calcareous soil (meadow cinnamon) in Hebei Province, China, from 2003 to 2006 to investigate the effects of phosphate fertilizer and manure on the yield of Chinese cabbage, soil P accumulation, P sorption saturation, soluble P in runoff water, and P leaching. P fertilizer (P2O5) application at a rate of 360 kg ha^-1 or manure of 150 t ha^-1 significantly increased Chinese cabbage yield as compared to the unfertilized control. However, no significant yield response was found with excessive phosphate or manure application. Soil Olsen-P, soluble P, bioavailable P, the degree of phosphorus sorption saturation in top soil layer (0-20 cm), and soluble P in runoff water increased significantly with the increase of phosphate fertilizer and manure application rates, whereas the maximum phosphorus sorption capacity (Qm) decreased with the phosphate fertilizer and manure application rates. Soil Olsen-P and soluble P also increased significantly in the sub soil layer (20-40 cm) with the high P fertilizer and manure rates. It indicates that excessive P application over crop demand can lead to a high environmental risk owing to the enrichment of soil Olsen-P, soluble P, bioavailable P, and the degree of phosphorus sorption saturation in agricultural soils.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX2-YW-T07)the National Natural Science Foundation of China (41171396)
文摘Study on soil phosphorus(P) fraction is an important aspect in probing the mechanisms of soil P accumulation in farmland and mitigating its losing risk to the environment. We used a sequential extraction method to evaluate the impacts of long-term fertilization and straw incorporation on inorganic, organic, and residual P(Pi, Po, and Pre) fractions in the plow layer(0–20 cm) of acidic paddy soil in southern China. The experiment comprised of six treatments:(i) no fertilizer control(CK);(ii) straw incorporation and green manure(SG);(iii) nitrogen and P fertilizer(NP);(iv) NP+SG;(v) NP+K fertilizer(NPK); and(vi) NPK+SG. The results showed that, compared to the initial total soil P content(TSP, 600 mg kg^–1 in 1990), long-term(20 years) combined continuous P fertilizer and SG significantly increased P accumulation(by 13–20%) while single fertilization(39.3 kg P ha^–1 yr^–1) could maintain soil P status at the most. The average soil P fractions comprised of extractable Pi, Po, and Pre by 51.7, 33.4, and 14.9% in total soil P, respectively. With comparison of no fertilizer addition(CK), long-term single fertilization significantly(P〈0.05) increased the accumulation of Na HCO3^–, Na OH^–, and HCl^– extractable Pi fractions accounting for two- to three-fold, while SG increased the accumulation of Na HCO3^– and Na OH^– extractable Piand Po accounting for 12–60%. Though the mobilization of Pre fractions was not significant(P〉0.05), our data indicate that SG may partially substitute for fertilizer P input and minimizing soil P accumulation and subsequent environmental risk in the subtropical paddy soil.