Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water u...Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.展开更多
Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the...Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the slope degree were selected as regional independent variables and canopy density and stock litter were selected as independent variables, and integral diffusing models were established for evaluation of the benefit of soil and water conservation of forest. By solving the parameters of models using the package of STATISTICA, the Power function between independent variables and dependent variables was set up. The soil conservation amount of forest and economic values were estimated using the contrast method for the ecological forestry engineering of the above three areas.展开更多
To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) metho...To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.展开更多
为揭示南方红壤侵蚀流域不同情景措施的减沙效应,实现区域可持续发展,采用SWAT(soil and water assessment tool)模型模拟方法,以南方典型花岗岩红壤侵蚀流域——福建长汀朱溪流域为研究区域,在模拟该流域产流产沙状况的基础上,通过不...为揭示南方红壤侵蚀流域不同情景措施的减沙效应,实现区域可持续发展,采用SWAT(soil and water assessment tool)模型模拟方法,以南方典型花岗岩红壤侵蚀流域——福建长汀朱溪流域为研究区域,在模拟该流域产流产沙状况的基础上,通过不同水土保持措施和不同土地利用方式调整的情景设置,量化分析不同情景措施对该流域的减沙效应。结果表明,SWAT模型的模拟效果能达到模型要求的精度,2013—2017年朱溪流域年均径流量和年均泥沙量分别为4.793×10^(7)m^(3)和1.037×10^(7)kg。乔灌草混交和全坡面种草措施能有效提高植被覆盖度,减沙效果优越;不同土地利用方式下模拟得到朱溪流域单位面积年均减沙率为3.49%。以上研究结果可为红壤侵蚀流域泥沙阻控的生态恢复措施提供决策参考。展开更多
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-K...Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.展开更多
基金The German Academic Exchange Service (DAAD) provided funding for the first authorThe German Federal Ministry of Education and Research (BMBF) provided funding for the second author through the “GLANCE” project (Global Change Effects on River Ecosystems, 01LN1320A)。
文摘Water resources are precious in arid and semi-arid areas such as the Wadis of Iran. To sustainably manage these limited water resources, the residents of the Iranian Wadis have been traditionally using several water use systems(WUSs) which affect natural hydrological processes. In this study, WUSs and soil and water conservation measures(SWCMs) were integrated in a hydrological model of the Halilrood Basin in Iran. The Soil and Water Assessment Tool(SWAT) model was used to simulate the hydrological processes between 1993 and 2009 at daily time scale. To assess the importance of WUSs and SWCMs, we compared a model setup without WUSs and SWCMs(Default model) with a model setup with WUSs and SWCMs(WUS-SWCM model). When compared to the observed daily stream flow, the number of acceptable calibration runs as defined by the performance thresholds(Nash-Sutcliffe efficiency(NSE)≥0.68, –25%≤percent bias(PBIAS)≤25% and ratio of standard deviation(RSR)≤0.56) is 177 for the Default model and 1945 for the WUS-SWCM model. Also, the average Kling–Gupta efficiency(KGE) of acceptable calibration runs for the WUS-SWCM model is higher in both calibration and validation periods. When WUSs and SWCMs are implemented, surface runoff(between 30% and 99%) and water yield(between 0 and 18%) decreased in all sub-basins. Moreover, SWCMs lead to a higher contribution of groundwater flow to the channel and compensate for the extracted water by WUSs from the shallow aquifer. In summary, implementing WUSs and SWCMs in the SWAT model enhances model plausibility significantly.
文摘Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the slope degree were selected as regional independent variables and canopy density and stock litter were selected as independent variables, and integral diffusing models were established for evaluation of the benefit of soil and water conservation of forest. By solving the parameters of models using the package of STATISTICA, the Power function between independent variables and dependent variables was set up. The soil conservation amount of forest and economic values were estimated using the contrast method for the ecological forestry engineering of the above three areas.
文摘To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.
文摘为揭示南方红壤侵蚀流域不同情景措施的减沙效应,实现区域可持续发展,采用SWAT(soil and water assessment tool)模型模拟方法,以南方典型花岗岩红壤侵蚀流域——福建长汀朱溪流域为研究区域,在模拟该流域产流产沙状况的基础上,通过不同水土保持措施和不同土地利用方式调整的情景设置,量化分析不同情景措施对该流域的减沙效应。结果表明,SWAT模型的模拟效果能达到模型要求的精度,2013—2017年朱溪流域年均径流量和年均泥沙量分别为4.793×10^(7)m^(3)和1.037×10^(7)kg。乔灌草混交和全坡面种草措施能有效提高植被覆盖度,减沙效果优越;不同土地利用方式下模拟得到朱溪流域单位面积年均减沙率为3.49%。以上研究结果可为红壤侵蚀流域泥沙阻控的生态恢复措施提供决策参考。
文摘Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961-2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961-1980) that influenced slightly by human activities and the compared period (1981-2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961-2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981-1990, 1991-2000, 2001-2005 and 1981-2005, the average annual runoff reduction amounts were 1.15×10^8, 0.28×10^8, 1.10×10^8 and 0.79×10^8 m^3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.