期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Driving forces and their interactions of soil erosion in soil and water conservation regionalization at the county scale with a high cultivation rate
1
作者 LUO Bang-lin LI Jiang-wen +2 位作者 GONG Chun-ming ZHONG Shou-qin WEI Chao-fu 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2502-2518,共17页
Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatia... Soil erosion control based on county scale Soil and Water Conservation Regionalization(SWCR)is an essential component of China's ecological civilization construction.In SWCR,the quantitative analysis of the spatial heterogeneity and driving factors of soil erosion among different regions is still lacking.It is of great significance for soil erosion control to deeply examine the factors contributing to soil erosion(natural,land use,and socioeconomic factors)and their interaction at the county and regional levels.This study focused on a highly cultivated area,Hechuan District of Chongqing in the Sichuan Basin.The district(with 30 townships)was divided into four soil and water conservation regions(Ⅰ-Ⅳ)using principal component and hierarchical cluster analysis.The driving factors of soil erosion were identified using the geographical detector model.The results showed thatⅰ)the high cultivation rate was a prominent factor of soil erosion,and the sloping farmland accounted for 78.4%of the soil erosion in the study area;ⅱ)land use factors demonstrated the highest explanatory power in soil erosion,and the average interaction of land use factors explained 60.1%of soil erosion in the study area;ⅲ)the interaction between natural factors,socioeconomic factors,and land use factors greatly contributes to regional soil erosion through nonlinear-enhancement of double-factor enhancement.This study highlights the importance of giving special attention to the effects of land use factors on soil erosion at the county scale,particularly in mountainous and hilly areas with extensive sloping farmland and a high cultivation rate. 展开更多
关键词 soil and water conservation regionalization Driving factors soil erosion Geographical detector model Spatial heterogeneity
下载PDF
Regions and Their Typical Paradigms for Soil and Water Conservation in China 被引量:2
2
作者 DANG Xiaohu SUI Boyang +5 位作者 GAO Siwen LIU Guobin WANG Tao WANG Bing NING Duihu BI Wei 《Chinese Geographical Science》 SCIE CSCD 2020年第4期643-664,共22页
China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and wate... China is experiencing conflicts between its large population and scarce arable land,and between a demand for high productivity and the severe soil erosion of arable land.Since 1949,China has committed to soil and water conservation(SWC),for which eight regions and 41 subregions have been developed to improve the environment and increase land productivity.To obtain information from the regional planning and strategies for SWC and to explore whether SWC practices simultaneously contribute to soil conservation,ecosystem functioning,and the livelihoods of local farmers,and to summarize the successful experiences of various SWC paradigms with distinct characteristics and mechanisms of soil erosion,this paper systematically presents seven SWC regions(excluding the Tibetan Plateau region)and 14 typical SWC paradigms,focusing on erosion mechanisms and the key challenges or issues in the seven regions as well as on the core problems,main objectives,key technologies,and the performance of the 14 typical paradigms.In summary,the 14 typical SWC paradigms successfully prevent and control local soil erosion,and have largely enhanced,or at least do not harm,the livelihoods of local farmers.However,there remain many challenges and issues on SWC and socioeconomic development that need to be addressed in the seven SWC regions.China,thus,still has a long way to go in successfully gaining the win-win objective of SWC and human aspects of development. 展开更多
关键词 regions for soil and water conservation soil erosion dryland farming collapse erosion karst rocky desertification typical paradigm for soil and water conservation
下载PDF
The regional difference in engineering-control and tillage factors of Chinese Soil Loss Equation 被引量:3
3
作者 CHEN Rui-yin YAN Dong-chun +4 位作者 WEN An-bang SHI Zhong-lin CHEN Jia-cun LIU Yuan CHEN Tai-li 《Journal of Mountain Science》 SCIE CSCD 2021年第3期658-670,共13页
Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate wat... Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate water erosion in China.Besides,the E and T factors can reflect the water and soil conservation effects of engineering-control and tillage practices.But in the current full coverage of soil erosion surveys in China(such as soil erosion dynamic monitoring),for the same practice,the E or T factors are assigned the same value across the country.We selected 469 E and T factors data based on runoff plots from 73 publications,and they came from six soil and water conservation regions.Correlation analysis,regression analysis,and nonparametric tests were used to determine the comparability of the data,and it was proved that the runoff plots dimensions are consistent with the local topography.The results of one-way ANOVA and nonparametric tests for E and T factors in different regions showed that the engineering-control practices have good soil and water conservation effects and weaken the regional differences of other environmental factors,so there were no significant differences in E factors between different regions.However,there were significant differences in T factors between different regions,and the geodetector was applied to explore the intrinsic driving force of the spatial distribution of T factors.The results of the geodetector showed that the dominant driving forces of the spatial distribution of different types of tillage practices were not completely the same.When using CSLE to calculate water erosion,the E factor of the same practice can be used uniformly throughout the country,and the T factor needs to be considered and selected according to regional differences.At the same time,when choosing tillage practices in each water and soil conservation region,practices with better sediment reduction benefits should also be selected according to the regional environmental conditions. 展开更多
关键词 Engineering-control factor Tillage factor Runoff plot soil and water conservation regions Geodetector
下载PDF
Gully Erosion Regionalization of Black Soil Area in Northeastern China 被引量:16
4
作者 YANG Jiuchun ZHANG Shuwen +3 位作者 CHANG Liping LI Fei LI Tianqi GAO Yan 《Chinese Geographical Science》 SCIE CSCD 2017年第1期78-87,共10页
Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fe... Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fertile farmland there. Regionalization of gully erosion can reveal the spatial distribution and regularity of the development of gully erosion. Based on the eco-geographical regional background features of the black soil area, this study combined the regionalization with influencing factors of the development of gully erosion. GIS spatial analysis, geostatistical analysis, spatial statistics, reclassification, debris polygon processing and map algebra methods were employed. As a result, the black soil area was divided into 12 subregions. The field survey data on type, length, volume and other characteristics indicators of gully erosion were used to calibrate the results. Then the features of every subregion, such as where the gully erosion is, how serious it is, and why it happens and develops, were expounded. The result is not only an essential prerequisite for gully erosion surveys and monitoring, but also an important basis for gully erosion prevention. 展开更多
关键词 regionalization gully erosion soil and water conservation black soil area northeastern China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部