Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore...Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.展开更多
Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At l...Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At last,exploration ways of roles of science and technology in soil and water conservation were proposed.展开更多
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con...Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield.展开更多
Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture ...Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in one word, it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world's arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. This paper described terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture.展开更多
Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate wat...Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate water erosion in China.Besides,the E and T factors can reflect the water and soil conservation effects of engineering-control and tillage practices.But in the current full coverage of soil erosion surveys in China(such as soil erosion dynamic monitoring),for the same practice,the E or T factors are assigned the same value across the country.We selected 469 E and T factors data based on runoff plots from 73 publications,and they came from six soil and water conservation regions.Correlation analysis,regression analysis,and nonparametric tests were used to determine the comparability of the data,and it was proved that the runoff plots dimensions are consistent with the local topography.The results of one-way ANOVA and nonparametric tests for E and T factors in different regions showed that the engineering-control practices have good soil and water conservation effects and weaken the regional differences of other environmental factors,so there were no significant differences in E factors between different regions.However,there were significant differences in T factors between different regions,and the geodetector was applied to explore the intrinsic driving force of the spatial distribution of T factors.The results of the geodetector showed that the dominant driving forces of the spatial distribution of different types of tillage practices were not completely the same.When using CSLE to calculate water erosion,the E factor of the same practice can be used uniformly throughout the country,and the T factor needs to be considered and selected according to regional differences.At the same time,when choosing tillage practices in each water and soil conservation region,practices with better sediment reduction benefits should also be selected according to the regional environmental conditions.展开更多
The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang, Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods including reduced tillage...The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang, Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods including reduced tillage(RT), no-till(NT), 2 crops/year(2C), subsoiling(SS), and conventional tillage(CT)were compared to determine the effects of tillage methods on soil water conservation, water availability, and wheat yields in a search for better farming systems in the areas. The NT and SS showed good effects on water conservation. The soil water storage increased 12 - 33 mm with NT and 9-24 mm with SS at the end of summer fallow periods. The soil evaporation with NT and SS decreased 7-8 mm and 34 - 36 mm during the fallow periods of 1999 and 2001, respectively. Evapotranspiration(ET)with NT and SS increased about 47 mm during wheat growth periods of 2000 to 2001. Treatment RT and 2C had low water storage and high water losses during the fallow periods. The winter wheat yields with conservation tillage practices were improved in the 2nd year, increased by 3, 5 and 8% with RT, NT and SS, respectively, compared with CT. The highest wheat yields were obtained with subsoiling, and the maximum economic benefits from no-till. All conservation tillage practices provided great benefits to saving energy and labors, reducing operation inputs, and increasing economic returns. No-till and subsoiling have shown promise in increasing water storage, reducing water loss, enhancing water availability, and saving energy, as well as increasing wheat yield.展开更多
Soil and water conservation technology plays an important role in soil and water loss control and the construction of the ecological civilization in vulnerable areas. Here, soil and water conservation technology use o...Soil and water conservation technology plays an important role in soil and water loss control and the construction of the ecological civilization in vulnerable areas. Here, soil and water conservation technology use over 70 years for the Zhifanggou watershed is summarized and ecological, economic and social backgrounds are determined through consultation with experts and reference to published literature. We found that soil and water conservation technology use includes soil and water conservation engineering technology, soil and water conservation cultivation technology and soil and water conservation biotechnology. Soil and water conservation technology utilization varied with people's demands and core problems at different developmental stages of the agricultural eco-economic system. The coupling process of the agricultural eco-economic system at Zhifanggou went through three stages. In stages I and II, soil and water conservation cultivation technology was applied to meet farmers' basic life demands. In stage III, all three technologies were applied comprehensively to solve eco-environmental problems and adjust industrial structure. To facilitate regional ecological civilization construction and sustainable development of the ecological economy and society, more emphasis should be given to research and development, implementation of soil and water conservation technology, stand structure improvement, forest grass quality enhancement, biodiversity, ecosystem functional improvement, development of soil and water conservation ecological resources, the coupling of soil and water conservation, and agricultural industry-resource optimization.展开更多
Analysis of the development of research and technical application is a critical basis for the identification and evaluation for suitable soil and water conservation ecological technology(SWCET) in China. Among instr...Analysis of the development of research and technical application is a critical basis for the identification and evaluation for suitable soil and water conservation ecological technology(SWCET) in China. Among instruments for analyzing the development of research and technical application, bibliometric statistics and visualization tools such as Cite Space have been widely applied. To analyze the domestic development of SWCET, we applied Cite Space to the CNKI(China National Knowledge Infrastructure) database on Chinese research literature(from Jan 1985 to Mar 2017) and patents(Jan 2002 to Feb 2017). The circulation of research after 2002 and quantity of patents after 2010 increased rapidly. Research institutions, people and interests were dispersed, a strong center of research has not been formed and cooperation among research institutions is weak. The number of patented inventions in western regions of China suffering serious soil erosion is far lower than that in eastern regions such as Jiangsu, Beijing, Shandong and Guangdong. Vegetation restoration, ecological slope protection and protective cultivation are relative hotspots according to technical measures: the Loess Plateau, stony desertification(area) and dry-hot valley according to research area, and expressway, side slope and sloping cropland according to application area. Research hotspots mainly appeared several years after the number of published papers increased in 2002. In the past five years, only stony desertification has emerged as a focus. We argue that further studies on the identification and evaluation of SWCET should be focused on certain technical measures, regions and areas.展开更多
基金Supported by the National Basic Research Program of China(2007CB407204)~~
文摘Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures.
文摘Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At last,exploration ways of roles of science and technology in soil and water conservation were proposed.
基金funded by the Ph D Programs Foundation, Ministry of Education, China(20106202110002)the National Public Welfare Foundation for Industry Scheme of China (201103001)the National Natural Science Foundation of China (201131160265)
文摘Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield.
基金supported by the National Natural Science Foundation of China (40771132)the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD15B06)+3 种基金the Australian Center for International Agricultural Research (CIM-1999-094)the Education Department of Gansu Province, China (0802-07)the Research Fund for the Doctoral Program of Higher Education of China (20106202120004)the Gansu Provincial Key Laboratory of Aridland Crop Science
文摘Conservation agriculture has been practised for three decades and has been spread widely. There are many nomenclatures surrounding conservation agriculture and differ to each other lightly. Conservation agriculture (CA) is a system approach to soil and water conservation, high crop productivity and profitability, in one word, it is a system approach to sustainable agriculture. Yet, because conservation agriculture is a knowledge-intensive and a complex system to learn and implement, and also because of traditions of intensive cultivation, adoption rates have been low, since to date, only about seven percent of the world's arable and permanent cropland area is farmed under conservation agriculture. The practice and wider extention of conservation agriculture thus requires a deeper understanding of its ecological underpinnings in order to manage its various elements for sustainable intensification, where the aim is to conserve soil and water and improve sustainability over the long term. This paper described terms related to conservation agriculture, presented the effects of conservation agriculture on soil and water conservation, crop productivity, progress and adoption of CA worldwide, emphasized obstacles and possible ways to increase CA adoption to accelerate sustainable development of China agriculture.
基金the National Key R&D Program of China(2016YFC0402301-02)。
文摘Accurate assessment of soil erosion is an important prerequisite for controlling soil erosion.The engineering-control(E)and tillage(T)factors are the keys for Chinese Soil Loss Equation(CSLE)to accurately evaluate water erosion in China.Besides,the E and T factors can reflect the water and soil conservation effects of engineering-control and tillage practices.But in the current full coverage of soil erosion surveys in China(such as soil erosion dynamic monitoring),for the same practice,the E or T factors are assigned the same value across the country.We selected 469 E and T factors data based on runoff plots from 73 publications,and they came from six soil and water conservation regions.Correlation analysis,regression analysis,and nonparametric tests were used to determine the comparability of the data,and it was proved that the runoff plots dimensions are consistent with the local topography.The results of one-way ANOVA and nonparametric tests for E and T factors in different regions showed that the engineering-control practices have good soil and water conservation effects and weaken the regional differences of other environmental factors,so there were no significant differences in E factors between different regions.However,there were significant differences in T factors between different regions,and the geodetector was applied to explore the intrinsic driving force of the spatial distribution of T factors.The results of the geodetector showed that the dominant driving forces of the spatial distribution of different types of tillage practices were not completely the same.When using CSLE to calculate water erosion,the E factor of the same practice can be used uniformly throughout the country,and the T factor needs to be considered and selected according to regional differences.At the same time,when choosing tillage practices in each water and soil conservation region,practices with better sediment reduction benefits should also be selected according to the regional environmental conditions.
文摘The tillage experiments for winter wheat were conducted on the slope farmland in Luoyang, Henan Province in the semihumid to arid loess plateau areas of North China. Different tillage methods including reduced tillage(RT), no-till(NT), 2 crops/year(2C), subsoiling(SS), and conventional tillage(CT)were compared to determine the effects of tillage methods on soil water conservation, water availability, and wheat yields in a search for better farming systems in the areas. The NT and SS showed good effects on water conservation. The soil water storage increased 12 - 33 mm with NT and 9-24 mm with SS at the end of summer fallow periods. The soil evaporation with NT and SS decreased 7-8 mm and 34 - 36 mm during the fallow periods of 1999 and 2001, respectively. Evapotranspiration(ET)with NT and SS increased about 47 mm during wheat growth periods of 2000 to 2001. Treatment RT and 2C had low water storage and high water losses during the fallow periods. The winter wheat yields with conservation tillage practices were improved in the 2nd year, increased by 3, 5 and 8% with RT, NT and SS, respectively, compared with CT. The highest wheat yields were obtained with subsoiling, and the maximum economic benefits from no-till. All conservation tillage practices provided great benefits to saving energy and labors, reducing operation inputs, and increasing economic returns. No-till and subsoiling have shown promise in increasing water storage, reducing water loss, enhancing water availability, and saving energy, as well as increasing wheat yield.
基金National Key Research and Development Program of China(2016YFC0503702)National Natural Science Foundation of China(41571515)
文摘Soil and water conservation technology plays an important role in soil and water loss control and the construction of the ecological civilization in vulnerable areas. Here, soil and water conservation technology use over 70 years for the Zhifanggou watershed is summarized and ecological, economic and social backgrounds are determined through consultation with experts and reference to published literature. We found that soil and water conservation technology use includes soil and water conservation engineering technology, soil and water conservation cultivation technology and soil and water conservation biotechnology. Soil and water conservation technology utilization varied with people's demands and core problems at different developmental stages of the agricultural eco-economic system. The coupling process of the agricultural eco-economic system at Zhifanggou went through three stages. In stages I and II, soil and water conservation cultivation technology was applied to meet farmers' basic life demands. In stage III, all three technologies were applied comprehensively to solve eco-environmental problems and adjust industrial structure. To facilitate regional ecological civilization construction and sustainable development of the ecological economy and society, more emphasis should be given to research and development, implementation of soil and water conservation technology, stand structure improvement, forest grass quality enhancement, biodiversity, ecosystem functional improvement, development of soil and water conservation ecological resources, the coupling of soil and water conservation, and agricultural industry-resource optimization.
基金National Key Research and Development Program of China(2016YFC0503705)
文摘Analysis of the development of research and technical application is a critical basis for the identification and evaluation for suitable soil and water conservation ecological technology(SWCET) in China. Among instruments for analyzing the development of research and technical application, bibliometric statistics and visualization tools such as Cite Space have been widely applied. To analyze the domestic development of SWCET, we applied Cite Space to the CNKI(China National Knowledge Infrastructure) database on Chinese research literature(from Jan 1985 to Mar 2017) and patents(Jan 2002 to Feb 2017). The circulation of research after 2002 and quantity of patents after 2010 increased rapidly. Research institutions, people and interests were dispersed, a strong center of research has not been formed and cooperation among research institutions is weak. The number of patented inventions in western regions of China suffering serious soil erosion is far lower than that in eastern regions such as Jiangsu, Beijing, Shandong and Guangdong. Vegetation restoration, ecological slope protection and protective cultivation are relative hotspots according to technical measures: the Loess Plateau, stony desertification(area) and dry-hot valley according to research area, and expressway, side slope and sloping cropland according to application area. Research hotspots mainly appeared several years after the number of published papers increased in 2002. In the past five years, only stony desertification has emerged as a focus. We argue that further studies on the identification and evaluation of SWCET should be focused on certain technical measures, regions and areas.